
Unsniff Plugin Developer’s Guide | 1

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

Unsniff Plugin Developer’s Guide

For use with Unsniff Network Analyzer

Version 1.3
Feb 3, 2006

2 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

Unleash Networks Pvt Limited
5, Nehru Street, Gowrivakkam
Chennai 601302, India
http://www.unleashnetworks.com
support@unleashnetworks.com

This document and the software described by this document are
Copyright © 2003-05 by Unleash Networks Pvt Ltd. All rights reserved.
Use of the software described herein may only be done in accordance with the
License Agreement provided with the software. This document may not
be reproduced in full or partial form except for the purpose of using the
software described herein in accordance with the License Agreement
provided with the software. Information in this document is subject to
change without notice. Companies, names and data used in the examples
herein are fictitious unless otherwise noted. The API may only be used with
the UNSNIFF NETWORK ANALYZER. You may not reverse engineer or copy
the API to work with any other product.

Windows, Visual Studio are registered trademarks of Microsoft Corporation.
All other trademarks are the property of their respective owners.

UNLEASH NETWORKS PVT LTD WILL NOT BE LIABLE FOR (A) ANY BUG,
ERROR, OMISSION, DEFECT, DEFICIENCY, OR NONCONFORMITY IN
MERCHANT OR THIS DOCUMENTATION; (B) IMPLIED
MERCHANTIBILITY OF FITNESS FOR A PARTICULAR PURPOSE; (C)
IMPLIED WARRANTY RELATING TO COURSE OF DEALING, OR
USAGE OF TRADE OR ANY OTHER IMPLIED WARRANTY
WHATSOEVER; (D) CLAIM OF INFRINGEMENT; (E) CLAIM IN TORT,
WHETHER OR NOT ARISING IN WHOLE OR PART FROM UNLEASH NETWORKS PVT
LTD’s FAULT, NEGLIGENCE, STRICT LIABILITY, OR PRODUCT LIABILITY, OR (F) CLAIM
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES,
OR LOSS OF DATA, REVENUE, LICENSEES GOODWILL, OR USE. IN NO CASE
SHALL UNLEASH NETWORKS PVT LTD LIABILITY EXCEED THE PRICE THAT LICENSEE
PAID.

Unsniff Plugin Developer’s Guide | 3

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

Revision History

June 20, 2005 Rev 1.0 Initial Release
Sep 27, 2005 Rev 1.1 Updated before public Beta release with

comments from pre Beta
Oct 20, 2005 Rev 1.2 Minor updates from web reviews
Feb 3, 2006 Rev 1.3 Updates from Beta 1

4 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

1 Introduction ... 6

1.1 About Unsniff ... 6
1.2 Intended audience ... 6

1.2.1 Skills required... 6
1.3 Getting Started .. 7

1.3.1 The Unsniff DevZone ... 7
1.3.2 Platforms .. 7

1.4 Typographical Conventions... 8
2 Unsniff Plugin Framework... 9

2.1 GUIDs.. 9
2.1.1 GUID Formats .. 9
2.1.2 Predefined GUIDs .. 9

2.2 The Unsniff Plugin Framework .. 10
2.2.1 The COM environment... 10

2.3 The Development Environment... 12
2.3.1 Microsoft Visual Studio ™ .. 12
2.3.2 Unsniff Network Analyzer... 13

3 Protocol Plugins Overview.. 14
3.1 Protocol plugin tasks ... 14
3.2 API error checking ... 15
3.3 Which method should I use ? .. 15

3.3.1 When only C++ will do ... 16
3.4 Unsniff Packet Analysis Process... 17

3.4.1 Main packet analysis functions .. 17
3.4.2 Stream analysis.. 17

3.5 The Field Breakout process .. 18
3.5.1 The Frame – Stack model.. 18
3.5.2 Example ... 19

4 Fields .. 21
4.1 Goals ... 21
4.2 Properties of Fields.. 22
4.3 Styles ... 23
4.4 Standard Field Types .. 25
4.5 Defining Fields... 27

4.5.1 XML vs. C++... 28
4.5.2 ProvideFieldDefs function .. 28
4.5.3 UserAddFieldDef function .. 29
4.5.4 Simple Fields.. 29
4.5.5 Bit Fields... 30
4.5.6 Enumerations ... 32
4.5.7 Records .. 34
4.5.8 Using Variables .. 37
4.5.9 Variable Length Fields ... 39
4.5.10 Auto Repeat Fields... 41
4.5.11 Choice Fields.. 44
4.5.12 Conditional Fields... 47
4.5.13 External Fields.. 48
4.5.14 ASN.1 ... 50
4.5.15 Padding fields... 61
4.5.16 Using Delay Load... 63
4.5.17 Using Resolvers ... 64
4.5.18 User Defined Fields.. 66

5 Plugins in C++ .. 68
5.1 The Unsniff Plugin API Visual Studio Wizards .. 69

Unsniff Plugin Developer’s Guide | 5

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

5.1.1 Wizards Introduction .. 69
5.1.2 Unsniff Project AppWizard ... 70
5.1.3 Unsniff Plugin ATL COM Object Wizard .. 72

5.2 Installing Plugins.. 75
5.2.1 Installation .. 75
5.2.2 Activation.. 76
5.2.3 Access Points... 76
5.2.4 Deployment .. 77
5.2.5 Uninstall.. 77

5.3 Hello World .. 78
5.3.1 The HelloWorld protocol... 78
5.3.2 Instructions ... 79

5.4 Handling Stream Based Protocols .. 85
5.4.1 Adding support for stream based protocols ... 85
5.4.2 The IUSNFStream interface... 86
5.4.3 Writing Stream based Plugins.. 88
5.4.4 Stream Example (LDAP).. 89

5.5 Defining Fields... 91
5.5.1 Alternate methods .. 91
5.5.2 Using FieldStm... 92
5.5.3 UserAddFieldDef method... 93

5.6 Accounting... 94
5.6.1 Add Accounting support ... 94
5.6.2 An Example .. 95
5.6.3 Add accounting manually ... 96

5.7 Configuration Parameters ... 97
5.7.1 Add Configuration Support... 97
5.7.2 Unsniff Plugin Configuration... 97
5.7.3 The USNF_xxxx_CONFIG_ENTRY macro.. 98
5.7.4 An Example .. 99

6 XML Plugins.. 101
6.1 Using an XML Editor.. 102
6.2 Installing XML Plugins ... 103
6.3 Unsniff Protocol Plugin XML Specification .. 104

6.3.1 Top-Level Structure.. 104
6.3.2 USNFProtocol .. 105
6.3.3 DescriptionString .. 107
6.3.4 AccessPoints.. 109
6.3.5 Defaults .. 110
6.3.6 FieldDefs .. 111
6.3.7 FieldDef .. 112

7 Advanced Plugins ... 122
7.1 Types ... 122
7.2 Development Environment .. 124

7.2.1 View installed plugins ... 124
7.2.2 COM Tips ... 124

7.3 Eavesdroppers .. 125
7.4 Name Resolvers .. 126
7.5 Custom User Object .. 128
7.6 Custom User Object Renderer .. 129
7.7 User Interface Plugins ... 131
7.8 Custom Sheets .. 135

Appendix A – API Error Codes .. 136
Appendix B – XML Schema... 141

6 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

1 Introduction

This guide explains how to write plugins for the Unsniff Network Analyzer. This guide must be
used along with the API documentation and the code samples provided with the Unsniff API
Developers Pack.

1.1 About Unsniff

Unsniff is the next generation network analyzer software from Unleash Networks. It features
never before seen graphical representations of packets, a new storage format that can store
entire sessions, PDUs, User Objects, comments and more. All conventional features of a
network/protocol analyzer such as filters, statistics are also present in Unsniff in a better form.

One of the key features of Unsniff is that it is also a framework for developing your own analysis
solutions. You can develop advanced decoders for your own protocols or you can choose to
extend the user interface of Unsniff by adding your own views of the network data. In order to
take advantage of these features, you have to write plugins.

This document along with the samples and API documentation contains all the information you
need.

1.2 Intended audience

This document is intended for developers who want to:

�� Add decoders for new protocols
�� Add basic user interface elements to Unsniff
�� Add custom sheets
�� Integrate their application into Unsniff via the Eavesdrop interface
�� Create custom name resolvers

1.2.1 Skills required

Protocol plugins are written in C++ or XML. All other plugins are written in C++.

If you wish to write protocol plugins (also known as decoders or dissectors) – you are expected to
have a working knowledge of XML or C++. The choice of using C++ or XML depends on the
complexity and “stateful”ness of the protocol.

The Unsniff API goes to great lengths to make development of Protocol Plugins easy. A large
number of protocols can get away with no C++ code at all. The XML API is sufficient in those
cases. Even when you have to dive into C++, the Visual Studio Wizards and the helper classes
make it really easy to write protocol plugins.

Other types of plugins (user inteface, name resolvers, eavesdroppers) are written in C++. A
knowledge of Microsoft ATL/COM will be helpful, but it is not required. Custom sheets are full
blown ActiveX controls that directly integrate into Unsniff as another sheet.

Unsniff Plugin Developer’s Guide | 7

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

1.3 Getting Started

In addition to this guide; you need several other resources before you can get down to business
and start writing plugins.

1. A licensed copy of Unsniff Network Analyzer

o You can purchase a licensed copy or download a trial from
http://www.unleashnetworks.com

2. The Unsniff Plugin Developers Pack

o You can download the developers pack from http://www.unleashnetworks.com

o The pack consists of the API library and header files, sample code, the Unsniff

Plugin Developers Guide (this document), API reference documentation, the
Unsniff Scripting Guide, and Visual Studio Wizards

o Install the Unsniff Plugin Developers Pack

3. A copy of Microsoft Visual C++ 6.0 or higher

4. Your favorite XML Editor. We recommend the free Microsoft XML Notepad See MSDN

Online XML Developer Center (http://msdn.microsoft.com/xml)

1.3.1 The Unsniff DevZone

Unleash Networks maintains the Unsniff DevZone at http://www.unleashnetworks.com .You can
access the latest developer tips, articles, patches, and sample code from the DevZone. The
DevZone also contains a developer message board where you can talk to Unleash Networks
engineers.

The Unsniff DevZone is your most valuable resource for writing plugins for Unsniff.

1.3.2 Platforms

The Unsniff Plugin API works only on the following platforms:

�� Windows 2000
�� Windows XP

8 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

1.4 Typographical Conventions

This guide uses the typographical conventions shown below:

Notation Description

Lucida Console

Code samples

Ludica Italics

Inline code comments

Times Italics

References to other documents or links

� Info

Additional advanced information

� Tip

Power Tip

� Warning

Warning

Unsniff Plugin Developer’s Guide | 9

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

2 Unsniff Plugin Framework

A plugin is an add-on program that enhances the functionality of Unsniff Network Analyzer.
Unsniff plugins are designed to integrate seamlessly into the Unsniff application framework.
Unsniff plugins can be classified broadly into two categories:

1. Protocol Plugins
a. Custom decoders for protocols

2. Advanced Plugins
a. Using the Eavesdrop interface
b. Custom Name Resolvers
c. Custom User Objects and Renderers
d. User Interface plugins (which add buttons, toolbars to Unsniff)
e. Custom Sheets

Before we dive into a discussion of plugins – let us first talk about GUIDs and how they are used
in Unsniff. These are central to the Unsniff plugin framework.

2.1 GUIDs
A GUID is a globally unique 128-bit (16 byte) number. GUIDs play a major role in the Unsniff
plugin framework. Every protocol must have a unique GUID. GUIDs are also used to identify User
Object types and Name-Resolution types.

2.1.1 GUID Formats
GUIDs are usually written in two formats on the Windows platform.

�� “Registry” format
{974FB098-DE46-45db-94DA-8D64A3BBCDE5}

�� “Define GUID” format – shown below
 DEFINE_GUID(........,0x974fb098, 0xde46, 0x45db, 0x94, 0xda, 0x8d, 0x64,
 0xa3, 0xbb, 0xcd, 0xe5);

� Tip
 Every protocol in Unsniff must have a unique GUID.

2.1.2 Predefined GUIDs
Each protocol must have a unique GUID. Unsniff already defines GUIDs for many common
protocols. See the files USNFProtocols.h and USNFProtocols.c in the include directory.

Some examples from the file:
DEFINE_GUID(UPID_IPUPID_IPUPID_IPUPID_IP,0xa2c724b, 0x5b9f, 0x4ba6, 0x9c, 0x97, 0xb0, 0x50, 0x80,
 0x55, 0x85, 0x74);
DEFINE_GUID(UPID_IPV6UPID_IPV6UPID_IPV6UPID_IPV6,0x85c0cced, 0xda8d, 0x4029, 0x92, 0x4a, 0xa6, 0xab, 0x87,
 0xf6, 0x2e, 0xf8);

For example: If you are planning to write a plugin for IP use the UPID_IP GUID in your plugin.

For your custom protocols or if your protocol is not in the pre-defined list, you have to generate
your own GUID using a tool such as GUIDGEN.exe provided with Microsoft Visual Studio. See
Chapter 5.3 for an example of generating your own GUID.

10 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

2.2 The Unsniff Plugin Framework

Unsniff uses Microsoft COM as its plugin framework. At the most basic level, every plugin is a
COM component that implements a certain set of interfaces. These interfaces depend on the
functionality being offered by the plugin.

A major part of the main Unsniff application is devoted to managing plugins. Unsniff provides the
following facilities to all plugins.

�� Installation and Discovery of plugins
�� Configuration
�� Activation and Deactivation
�� Persistence support
�� Reassembly
�� Logging and Tracing support

2.2.1 The COM environment
The picture below shows the environment of a plugin.

The main Unsniff application is not aware of any protocols. All intelligence is distributed in various
plugins. This design enables plugins to be developed and deployed independent of the main
application.

Unsniff
Application

(Plug in Host)

Plugin

Plugin

Plugin

Plugin

Host
interfaces

Plugin
interfaces

Unsniff Plugin Developer’s Guide | 11

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

The Unsniff API and COM
The Unsniff API shields you from all of COMs gory details. You will use a wizard to generate all
the skeleton code for you. You just have to write C++ code in specified areas.

��Info
For protocol plugins, the Unsniff API provides you with a lot of support.
Unless you look closely you will not even know that you are writing a COM
object using the Active Template Library (ATL). So take heart !

Here are some additional considerations while writing Unsniff plugins:

�� All plugins must be housed in In-Process Servers (DLL)
�� All plugins must use the Apartment Threaded model
�� Use the ATL (Active Template Library)

XML Plugins
The Unsniff API also features a very rich XML specification for writing protocol decoders. Most
protocols can be specified using this XML schema. This requires no C++ code at all.

If your protocol is stateful and complex – you need to use C++ or a mix of XML and C++. You can
take advantage of XML to define your fields and records. Field definitons are the most time
consuming and error-prone tasks while developing protocol decoders. C++ can be used to handle
the stateful part of your protocol. There are many samples in the API Developers Pack that
illustrate how a C++ plugin can take advantage of XML to define fields and records.

12 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

2.3 The Development Environment

In order to effectively write,debug, and deploy plugins you need to have access to some
development tools. Your development environment consists of:

�� Microsoft Visual Studio (if writing a C++ plugin)

�� XML Notepad or another XML Editor

�� The Unsniff Network Analyzer application

2.3.1 Microsoft Visual Studio ™

This section provides tips on leveraging Visual Studio for maximum productivity.

Tip 1 - Use the Unsniff API Wizards
All C++ plugins are COM components written using the Active Template Library. Always use the
wizards to generate the plugin project as well as the skeleton of the plugin object.

Tip 2 – Build Configurations
Choose the Unicode Debug build for developing your plugin.This enables you to have access to
Trace and Assert facilities. Switch to “Win32 - Unicode Release Min Dependency “build for a
release version of your plugin. Both these configurations are supported via the Unsniff Plugin App
Wizard.

Tip 3 – Debug Trace
Use the ATLTRACE(. .) function generously to add trace statements to your code. The output
from these statements will appear in the Output window in Visual Studio. The ATLTRACE
function is ignored in the release configuration.

Tip 4 – Unicode support
Use the macros defined in tchar.h to perform string operations. This will help you compile with
UNICODE support with very little effort. For example : Use _tcscpy() instead of strcpy(),
_stprintf(. . .) instead of sprintf.

Tip 5 – Class declaration
Unless you have already treaded the path of ATL COM, you are likely to get a serious headache
when you look at the plugin class declaration. DO not get disheartened1 at the apparent twisted
use of C++ templates. The Unsniff API uses a clever technique to hide all these from you2. You
are not expected to know anything about template programming or COM. A basic level of C++
knowledge is sufficient.

Tip 6 – Your own log messages
You can generate your own log messages that appear in the Unsniff Log Window. Refer to the
UserPrintLogMessage(. . .) method in the Unsniff API Reference.

1 The headache will disappear after you have written a few plugins. You will either learn to ignore
the class declarations or learn more about ATL
2 You plugin class actually inherits a lot of COM specific behavior from a base class. This is called
implementation inheritance

Unsniff Plugin Developer’s Guide | 13

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

2.3.2 Unsniff Network Analyzer

This is one of your most powerful debugging aids while developing a plugin. The Unsniff API
spews out very verbose and well defined error messages every time it encounters a error
situation. These messages appear in the Unsniff log window.

The Log Window

If not already visible; the Unsniff Log Window must be made visible by selecting View->Log
Window item from the main menu. All log messages from Unsniff application and the API are
shown in this window in different colors.

Tip 1 – Set the API Trace Level to Info
While debugging your plugin you want to set the API trace level to INFO. This ensures that all log
messages including minor warnings make it to the log window.

Tip 2 – Log Messages
The log window is a dockable / resizable window. This window contains a list of all log messages
that was generated in this session. The following log message was generated because we tried
to push a 38 byte field on to the field stack when only 22 bytes was left in the frame.

* 05-25-2005 04:55:01 00000538 01ab8ea0 [NB-NS] [0x80040207]
UAPI BreakoutFields [Details]: [0x80040207] Field "Question
Records"[39] (size 38) attempted to read beyond frame. Expected Size <=
22

The format of the log message is:
[Level] [Timestamp] [Internal Use 1][Internal Use 2] [Protocol Name] [Error Code] [Error Text]

All the error codes are described in detail in Appendix-A.

 Tip 3 – Use Import while testing
While testing protocol plugins you can either use a live capture or by just importing a capture file
from another format (e.g., tcpdump). You can save some time and also get a stable test input by
just importing already captured data.

14 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

3 Protocol Plugins Overview

The most common type of plugin in Unsniff. A protocol plugin is used to decode3 a message or
protocol. Depending on the skill level of the implementer, the complexity of the protocol, and
performance requirements – you can choose to write a plugin using any of the following methods.

Type Explanation
Pure XML Plugin
(Chapter 6)

The entire plugin is written using the Unsniff XML
Specification. A large number of protocols can be
handled in this method.

Pure C++ Plugin
(Chapter 5)

Use the Unsniff API. This offers the maximum
performance, features, and customizability.

A mixture of C++ and XML Routine tasks such as field and help definitions can
be written in XML. C++ can be used for the more
interesting or performance critical parts

This chapter is an overview of Unsniff packet analysis concepts. If you are looking for specific
information about C++ and/or XML plugins; refer to Chapter 5 (for C++) and Chapter 7(XML).

3.1 Protocol plugin tasks
A protocol plugins main task is to breakout individual fields of a protocol message from a raw byte
array. There are other important tasks a plugin may need to perform. Using the Unsniff API you
can write plugins that can do all these tasks.

�� Handle datagram based protocols (such as UDP, BOOTP)
�� Handle stream based protocols (such as LDAP, BGP)
�� Control how each field is displayed in the visual breakout
�� Control how each field is displayed in the tree view
�� Call another protocol plugin to decode a portion of the data
�� Pass control to another plugin
�� Filter based on any field(s) of the protocol
�� Allow any field to be shown on the Protocol Details Sheet in Unsniff
�� Perform accounting (e.g.. Count HTTP Get/Post/Response messages)
�� Provide balloon help text for any field
�� Provide bit-level breakdown of bitfields
�� Construct PDUs
�� Extract User Objects such as files, images, video, audio from payload
�� Allow user to enter configuration data for the plugin
�� Enable all of Unsniff rich graphical features (such as visual breakout, TCP ladder

diagrams)
�� Enable scripting using Ruby/VBScript
�� Decryption of data if approprite keying material is supplied
�� All the above features with minimum code

3 Also known as dissection

Unsniff Plugin Developer’s Guide | 15

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

3.2 API error checking

One of the main headaches while writing protocol decoders is to constantly watch out for buffer
overruns. Using the Unsniff API to write a protocol plugin will get you all the following error
checking for free.

�� Bounds checking (automatically stop if you try to read more data than captured)
�� Loop checking (detects if you are in an infinite loop, for example with zero length fields)
�� Alignment (detects if you try to read a mis-aligned 16,32,64, bit field)
�� Invalid records (if records are not nested properly)
�� Referring to an invalid field (if a message type is not known)
�� Invalid ASN.1 length and structure (if an ASN.1 message is not structured properly)

In addition to the above basic error checking, Unsniff API can detect over 80 separate error
conditions which are explained in Appendix-A : API Error Codes. When the Unsniff API
detects an error it stops decoding at that point and prints a log message with a detailed error
message.

3.3 Which method should I use ?

The Unsniff XML specification is really powerful. Almost any protocol can be described using XML
only. Even stream based protocols such as LDAP, BGP can be expressed in XML. However,
there are some restrictions to consider:

1. Your plugin must be the top-most in the protocol stack
2. You cannot use any custom configuration parameters
3. You cannot express protocols that require a look-ahead of more than 32 bits. For

example: If a Message type field (that determines all the other fields) is in byte # 20, you
have a look-ahead of 20 bytes. These protocols are extremely rare and is considered bad
protocol design. If you ever run into a protocol that requires this kind of look – ahead, you
have to go the C++ route.

4. You will not be able to extract user objects
5. You cannot build very advanced real time packet descriptions
6. You cannot support accounting for sub-protocols or messages
7. Your XML file can be read by the user of Unsniff. Therefore it is not suitable for

proprietary or secret protocols

� Tip
XML excels in field and help definitions. Even if you are forced to go the C++ route
due to various reasons as described in Sec 3.3, you can still define your fields in
XML. Then you can write code in C++ to utilize the fields that have been defined in
XML.

16 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

3.3.1 When only C++ will do
There are some scenarios where only a C++ plugin can be used. They are worth mentioning
here.

1. You want your protocol to remain proprietary so you cannot use an XML file
2. You need direct access to the packet payload
3. Your protocol has further lower level protocols
4. You want to create PDUs and User Objects
5. You want the highest performance possible

Unsniff Plugin Developer’s Guide | 17

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

3.4 Unsniff Packet Analysis Process

A protocol plugin needs to support two distinct packet analysis functions. They are Quick Parse
and Field Breakout. Both these packet analysis functions have only two inputs (1) an array of
BYTEs corresponding to the captured packet data (2) a USHORT (16 bit) number containing the
size of the array.

3.4.1 Main packet analysis functions

The protocol plugin has to answer these questions for each of the two packet analysis functions.
In these questions, “you” refers to the plugin; “me” refers to the main Unsniff application.

�� Quick Parse
o How many bytes of the array can you handle ?
o Give me a short description of the packet
o Is there a next protocol? If yes, give me values for the access points for the next

protocol or tell me directly what the next protocol is
o Perform any accounting now

�� Field Breakout
o Breakout the array into its constituent protocol fields
o Provide a mini-description of the packet

3.4.2 Stream analysis

Many protocols are stream based. They depend on a lower transport layer such as TCP to
provide a reliable transmission stream independent of the lower layer. Stream based protocols do
not respect the message boundaries at the data link layer imposed due to the MTU of the
physical medium.

Stream based protocols define PDUs or Messages which can span packet boundaries. One
packet may contain many PDUs or a single PDU may span multiple packets. Examples of
stream-based protocols are LDAP, BGP, and HTTP. Using the Unsniff API you no longer have to
worry about reassembly or keeping track of segments.

Stream based plugins must answer the following questions (in addition to Quick Parse and Field
Breakout functions mentioned in Sec 3.2.1)

�� Stream Function
o Do you want to be notified as bytes accumulate on a stream? If yes, how many

bytes must accumulate before you are notified.
o Handle one or more “stream events” (example events are: bytes ready in

stream, stream started, stream closed, stream incomplete)

�� Construct a PDU (which will be displayed in the PDU Sheet)
�� Extract user objects (if you want)

18 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

3.5 The Field Breakout process

The primary work of a protocol plugin is to breakout a raw array of BYTEs into the constituent
protocol fields. The breakout model used by Unsniff is a unique Frame – Stack model.

3.5.1 The Frame – Stack model

The Frame – Stack model is an innovation of Unsniff. It is designed to tremendously ease plugin
development. Captured packet data is presented to a plugin as a Frame. Unsniff maintains a
Frame Pointer that is automatically updated as fields are accounted for. The stack is nothing but
a set of fields that represent the protocol data.

Your tasks while writing a protocol plugin are:

�� Provide definitions of each field (you can use XML or C++ to provide these definitions)
�� Push some or all of the defined fields on to the stack in the correct order

The “Frame / Stack” model is shown below.

FF E0 00 12 33 44 55 66 77 88 99
01 DD EE CC B0 09 98 83 77 2A 0A

BreakoutFields

Field 1
 “ID”
Size = 4
Type = Numeric

Field 2
 “Type”
Size = 2
Type = Numeric

Field 3
“From”
Size = 4
Type = IPAddress

Field - n
“Checksum”
Size = 2
Type = Numeric

The “Frame” .
Raw Packet bytes. A frame
pointer keeps track of fields
already in the stack

The “Stack”
Fields are “pushed” on to the stack. As
fields are pushed, the Frame pointer is
advanced. This repeats until the frame
pointer reaches the end of the frame

The “Fields”
You push these fields on to the stack. The
order of fields depends on the protocol
being implemented. These fields can be
defined either in XML or in C++.

Unsniff Plugin Developer’s Guide | 19

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

3.5.2 Example

To quickly grasp the idea of the Frame-Stack breakout model, see the example shown below.

In the example below: we are trying to decode an RTP packet. (RTP stands for Real Time
Protocol, the actual mechanics of the protocol are not important to us for this purpose)
Field breakout is a two step process.

1. Provide definitions of all fields used by the protocol
2. Push the fields onto the stack using the frame as a guide

3.5.2.1 Provide Field Definitions

Fields are the foundation upon which packet analysis is built on. See Chapter 4 : Fields for
more detail on fields. Fields can be described in XML or C++. The pros and cons of both
approaches are discussed in detail in Chapter 4.

///
// ProvideFieldDefs - Predefined field definitions
//
///
BOOL CPIRTP::ProvideFieldDefs()
{

 USNF_BEGIN_ENUM_DEF(RTPProfilesRTPProfilesRTPProfilesRTPProfiles)
 ENUM_ENTRY(0, "PCMU,audio,8 khz,1 chan")
 ENUM_ENTRY(3, "GSM,audio,8 khz,1 chan")
 ENUM_ENTRY(33, "MP2T,aud/vid,90 khz")

 //.. similarly define all profiles here ..

 ENUM_ENTRY(34, "H263,video,90 khz")
 USNF_END_ENUM_DEF()

 CUSNFFlagsField * pPTF = new CUSNFFlagsFieldCUSNFFlagsFieldCUSNFFlagsFieldCUSNFFlagsField("M/Payload Type",

"M/PT",
FW_8BITS,
FS_SUBLAYOUT);

 pPTF->AddChild(FID_PT_F_M, new CUSNFNuCUSNFNuCUSNFNuCUSNFNumericField("Marker",mericField("Marker",mericField("Marker",mericField("Marker",
"M", FW_1BITS, FS_PLAIN));

 pPTF->AddChild(FID_PT_F_PT, new CUSNFEnumField("Payload Type"CUSNFEnumField("Payload Type"CUSNFEnumField("Payload Type"CUSNFEnumField("Payload Type",
"PT", FW_7BITS,

FS_LABEL|FS_PROTOCOL,
USE_ENUM(RTPProfilesRTPProfilesRTPProfilesRTPProfiles)));

 UserAddFieldDef(FID_PT_FLAGS,pPTF);

 UserAddFieldDef(FID_SEQ, new CUSNCUSNCUSNCUSNFNumericFieldFNumericFieldFNumericFieldFNumericField(Sequence",

 FW_16BITS,
 FS_PROTOCOL));

 // . . define all other fields similarly .. .
 return TRUE;
}

An Enum List

Flags Field

A Numeric field

20 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

3.5.2.2 Breakout Fields

Assuming all the fields are defined as shown in the example above using C++ or XML. You are
now ready to specify which fields appear in the given frame. You do this by pushing fields onto
the field stack. The FieldStm is a C++ stream operator which can be used to push fields onto the
stack. Alternately you can call UserPushField(..)

///
// BreakoutFields - Parse the Data buffer completely
//
///
BOOL CPIRTP::BreakoutFields(UCHAR * Data, USHORT DataLength)
{

 FieldStm << FID_CC_FLAGS

 << FID_PT_FLAGS
 << FID_SEQ
 << FID_TS
 << FID_SSRC
 << FID_CSRC;

 // Has extension header (depends on the X bit in the CC_FLAGS field)
 pv = UserGetFieldValue(FID_CC_F_X);
 if(pvif(pvif(pvif(pv---->GetNumericVal()==1) {>GetNumericVal()==1) {>GetNumericVal()==1) {>GetNumericVal()==1) {

 FieldStm << FID_EXT_DEF_PROFILE
 << FID_EXT_LENGTH
 << FID_EXT_DATA;
 }

 //.. more code..similar to above.. //

 return TRUE;
}

You can use the Frame access methods like UserGetNextOctet () to write conditional code. You
can also use intelligent fields such as ChoiceField and ConditionalField to accomplish the same
thing. We will examine this in detail in Chapter 4 : Fields

� Tip
The above example uses C++ to define fields. You could have also defined
these fields in XML. You could also group the fields shown into a
CUSNFRecord field and just push that one field onto the stack. The Unsniff
API will allow you to perform the same task in different ways.

These fields always
present

These 3 only present
if X bit is set in CC
flags

Unsniff Plugin Developer’s Guide | 21

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

4 Fields

Fields are the building blocks of the Frame-Stack model. The richness or depth of a protocol
decode depends on the accuracy of the fields defined. Using the Unsniff API you can define a
protocol field in great detail – with minimum effort.

What is a field?

A field represents a sequence of bytes that mean something to a network protocol. A protocol
message is nothing but a well-defined sequence of fields. Examples of fields for the IP protocol
are: “Source IP Address” , “Destination IP Address”, “Type of Service”

As a protocol plugin developer your task is to:

�� Read the relevant RFCs or other documents that specify the protocol
�� Make a note of all the fields that are present in the protocol
�� Express each field using the Unsniff API

4.1 Goals
The primary (over 90%) of the work involved in writing a protocol decoder is defining fields. The
Unleash Networks team had these goals while designing the support infrastructure for fields.

1. Unsniff Fields (Fields) must allow the user to specify as much detail or as little detail as
they want

2. Fields must be extensible. The user can add their own field types using C++
3. Fields must also capture the visual representation of the object
4. Fields have filtering support built in
5. Fields must enable the Protocol Details view in Unsniff
6. All fields must automatically be scriptable via the Unsniff Scripting API
7. The user must be able to use XML or C++ to specify fields
8. Fields must automatically avail of the security and error checking features built into the

Frame-Stack model
9. Fields must be self-documenting. The user should be able to provide field level help
10. Fields must handle all common networking issues like ASN.1, endian-ness, alignment,

records, name resolution
11. Above all Fields must be easy to use

22 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

4.2 Properties of Fields

A field has the following properties

Property Explanation
ID An integer ID that uniquely identifies the field

Type The type of field. You can use the built in types such as

Numeric, IPAddress, Binary, String, etc or your own user
defined types.

See Sec 4.4 : Standard Field Types for details about Types

Sec Sec 4.5 : Defining Fields for details on adding your own
field types

Name The full name of the field. For example: “Destination IP
Address”

Short Name A short form of the name. The Visual Breakout will use this
name if there are space constraints while displaying the full
Name. E.g. ““Dest IP”

It is recommended that the length of the short name is not
more than 10 characters

Size The size of the field. You can use a size value of F_AUTOSIZE
if the size is not known ahead of time.

Note: In Unsniff all sizes are in Bits (not bytes)

Help ID An integer ID that identifies the field level help text. Many
fields can share a common help text by using the same Help
ID

Styles Determines how a field is interpreted, and displayed.

See Sec 4.3 : Styles for details on styles

Icon

Determines what icon is shown for the field. You can select
from a list of pre-defined Icons.

Value A variant structure that holds the field value

Display Value The string representation of the field value

Example : the string “192.168.1.1” for a 32-bit IP address

Display Label The string used for the field label in the Unsniff Visual
Breakout. “Total Length 62 bytes” in the example shown
below

Unsniff Plugin Developer’s Guide | 23

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

4.3 Styles

Styles determine how a field is interpreted and displayed.

�� In C++ ; combine styles by OR-ing them together (e.g. FS_LABEL|FS_FILTERFS_LABEL|FS_FILTERFS_LABEL|FS_FILTERFS_LABEL|FS_FILTER)
�� In XML : combine styles using a comma (e.g. <styles> label,filter </styles<styles> label,filter </styles<styles> label,filter </styles<styles> label,filter </styles>)

Style (C++, XML) Explanation
FS_PLAIN
plain

The normal style. The visual breakout field is shown along with
the tree view.

FS_DRAW_LABEL
label

Show a label in the visual breakout

FS_DRAW_SUBLAYOUT
sublayout

For bit-fields; show the bits in a separate mini frame. The
example below shows the Flags/Frame Offset field sublayout
for the IP Protocol

FS_ENABLE_FILTER
filter

The user can construct a display filter based on this field

FS_ENABLE_FILTER_VALUE
filtervalue

The display filter must be based on the field value type. So
numeric fields will allow the user to enter numeric expressions,
enum will allow user to select values from a set, etc.

FS_ENABLE_FILTER_DISPLAYSTRING
filterdisplaystring

The display filter must be based on the display string of the
value. This allows the user to enter string regular expressions
even for numeric or enum fields.

FS_DRAW_SEPARATOR Draw a separator in the visual breakout. You can use this to
delineate records

FS_NO_VISUAL
nodetail

Do not draw this field in the visual breakout. Use this while
displaying text based protocols such as HTTP, where the
actual visual breakout has limited value – but will take up lot of
space

FS_NO_DETAIL
novisual

Do not draw this field in the tree view

FS_NO_VALUE
novalue

This field has no value. You may use this style on Reserved or
Pad fields

FS_PROTOCOL_ITEM
protocolitem

This field will appear on the Protocol Details Sheet in Unsniff

FS_USE_HOSTORDER
hostorder

This field is a numeric field in host order.

FS_ETHEREAL_STYLE_BITFLAGS
showbitflags

For bit-fields; this style indicates that we want to see a
traditional bit wise display in the tree view.

24 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

FS_UNICODE
unicode

For string fields. Indicates the contents are in Unicode

FS_SAVE_TO_VARIABLE
variable

Save the value of this field in a user-defined variable

FS_ALIGN_NATURAL
align

Enforce natural alignment rules for numeric fields. If this style
is in effect, the API will expect 16 bit fields to be aligned on a
SHORT boundary and 32-bit fields on a LONG boundary. If
this is not the case an error is flagged.

FS_IGNORE
ignore

This field must be ignored. You can use this style to
dynamically disable certain fields.

FS_REVERSE
reverse

The bit fields are specified in reverse order. This style is useful
when implementing IEEE standards.

FS_FILL
fill

This field will auto-repeat till the end of the packet frame or the
end of the current record.

FS_HEX_FORMAT
hex

Display this numeric field in Hexadecimal format

FS_OPTIONAL
optional

ASN.1 field only. Use this for ASN.1 fields that are tagged
OPTIONAL

FS_HIDDEN
hidden

This field will be hidden in the tree view. Use this for Record
Fields if you do not want a separate tree node for the record

FS_COMPRESSED_VISUAL
compressed-visual

The visual breakout for this field will be compressed.

FS_SIGNED
signed

Treat the field as a signed entity.

FS_CONDITIONAL

This field is conditional. It will be present only if a user defined
logical expression is true. (Example: $MsgType != 25)

FS_SIZE_EXPRESSION

The size of the field is determined by evaluating an user-
defined expressions. (Example: 8 * ($MsgLen – 2))

FS_CHOICE_EXPRESSION

One of the child fields is selected based on a user-defined
expression. See “ChoiceField” for more detail.

FS_REPS_EXPRESSION

This field is auto-repeat. The number of times this field repeats
is determined by evaluating an expression (Example:
$RecordCount)

Unsniff Plugin Developer’s Guide | 25

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

4.4 Standard Field Types

The Unsniff API provides you with a set of standard fields. These fields are designed to take care
of the majority of protocol plugin needs. If none of these fields suit you – you can define your own
field by deriving from an appropriate base class using C++.

Using fields in C++

You define fields by instantiating the appropriate class. The class names are of the form
CUSNF<FieldType>Field. Eg.CUSNFNumericField, CUSNFStringField

An example C++ entry

UserAddFieldDef(FID_YIADDR, new CUSNFIPAddressFieldCUSNFIPAddressFieldCUSNFIPAddressFieldCUSNFIPAddressField(“Yiaddr",

FS_FILTER|FS_PROTOCOL));

Using fields in XML

In XML you define fields by adding a <FieldDef> entry. The field names are simple English
names. E.g., “numeric” “string”

An example XML entry
(Refer to Chapter 6 for more detail about the Unsniff XML Specification)

 <FieldDef name="Yiaddr" >
 <fieldtype>ipaddress</fieldtype>
 <styles>filter,protocolitem</styles>
 <helptext>"Your" (client) IP Address</helptext>

 </FieldDef>

Field Types

The Unsniff API features the following built-in field types:

�� CUSNFNumericField
�� CUSNFEnumField
�� CUSNFBinaryField
�� CUSNFGroupField
�� CUSNFRecordField
�� CUSNFFlagsField
�� CUSNFStringField
�� CUSNFDelimitedStringField
�� CUSNFIPAddressField
�� CUSNFIPv6AddressField
�� CUSNFMACAddressField
�� CUSNFCommentField
�� CUSNFChoiceField

26 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

�� CUSNFFloatField
�� CUSNFBigNumericField
�� CUSNFGUIDField
�� CUSNFExternalField
�� CUSNFWeakRefField
�� CUSNFAsnField
�� CUSNFAsnGroupField
�� CUSNFAsnHeaderField
�� CUSNFAsnChoiceField
�� CUSNFAsnSetField
�� CUSNFAsnWeakRefField
�� CUSNFPadField

Unsniff Plugin Developer’s Guide | 27

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

4.5 Defining Fields

The ProvideFieldDefs() method is where you must all the fields used by your protocol. In the
ProvideFieldDefs() method; you can use C++ to define your fields or load field definitions from
an XML document.

This section deals with these issues in detail
.

�� XML vs. C++ issues

�� UserAddFieldDef function

�� ProvideFieldDefs function

�� simple fields

�� bit fields

�� records

�� using variables

�� fields of dynamic length

�� auto-repeat fields

�� choice fields

�� conditional

�� external fields

�� ASN.1 fields

�� padding fields

�� using delay load

�� using name resolution

�� user-defined fields

28 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

4.5.1 XML vs. C++

You can define fields in XML as well as in C++. These following scenarios arise:

1. You are writing a pure C++ plugin
a. In the method ProvideFieldDefs() , define all the fields directly using

UserAddFieldDef()4

2. You are writing a pure XML plugin
a. Define all your fields in the <FieldDefs> … </FieldDefs> block. Your protocol

must have only one field as the root field. Specify the name of this root field in the
<rootfield> tag.

3. You are writing a C++ plugin with only Field definitions specified in XML. This is a very

powerful combination.
a. Define all your fields in the <FieldDef> …. </FieldDef> block.
b. In the method ProvideFieldDefs() , instruct the API to load fields from the XML

document using UserLoadFieldDefsFromXML(“myprot.xml”) function.
c. You can also continue to define more fields in C++ using the regular

UserAddFieldDef() method.

4.5.2 ProvideFieldDefs function

You must define all fields within this method. This method can be used to load field definitions in
both XML and C++ formats. See examples below.

C++ Field Definitions

BOOL CmyPlug::ProvideFieldDefs()
{
 UserAddFieldDefUserAddFieldDefUserAddFieldDefUserAddFieldDef(FID_1, - - -);

 UserAddFieldDefUserAddFieldDefUserAddFieldDefUserAddFieldDef(FID_2, - - -);

 // more fields

 UserAddFieldDefUserAddFieldDefUserAddFieldDefUserAddFieldDef(FID_12, - - -);

 return TRUE;

}

XML Field Definitions

BOOL CmyPlug::ProvideFieldDefs()
{
 UserLoadFieldDefsFromXMLUserLoadFieldDefsFromXMLUserLoadFieldDefsFromXMLUserLoadFieldDefsFromXML(“xmldoc’);

 return TRUE;
}

More detail about ProvideFieldDefs can be found in Sec 5.5 : Defining Fields

4 See the Unsniff API Reference Documentation

Unsniff Plugin Developer’s Guide | 29

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

4.5.3 UserAddFieldDef function

This is the method that is used to add fields defined using C++. This is discussed in detail in
Chapter 5.5 : Defining Fields

4.5.4 Simple Fields

In this section – we will look at the usage of simple fields. Simple fields are of fixed length and do
not contain nested fields. Some examples of simple fields are Numeric, Enumerated, Strings,
IPAddress etc.

Let us take an example of a numeric field and see how it is defined in C++ and XML. You can
construct numeric fields using the following constructor.

CUSNFNumericField(LPCTSTR pszName,
 LPCTSTR pszShortName,
 DWORD dwSizeBits,
 DWORD dwStyle
);
Refer to the Unsniff API Reference documentation for a definition of all the constructors available
for CUSNFNumericField.

C++ Field Definitions

new CUSCUSCUSCUSNFNumericField(NFNumericField(NFNumericField(NFNumericField(
 "ProfileID", "ProfileID", "ProfileID", "ProfileID",
 "PID", FW_16BITS,
 FS_LABEL|FS_FILTER));

XML Field Definitions

<fielddef name=”ProfileIDProfileIDProfileIDProfileID” shortname=”PIDPIDPIDPID”>
 <fieldtype>numericnumericnumericnumeric</fieldtype>
 <sizebits>16161616</sizebits>
 <styles>label,filtlabel,filtlabel,filtlabel,filterererer</styles>
</fielddef>

Other simple fields are:
Class Name Description
CUSNFNumericField A numeric field of upto 32 bits wide
CUSNFBigNumericField A numeric field upto 64 bits wide
CUSNFStringField An ANSI or Unicode string field. It can be of fixed length or null

terminated
CUSNFDelimitedStringField An ANSI or Unicode string field terminated by a sequence of

characters (eg. “\r\n”)
CUSNFBinaryField Arbitrary length field
CUSNFFloatField A field in 32-bit IEEE Floating Point Format
CUSNFIPAddressField An IP Address
CUSNFMACAddressField A MAC Address
CUSNFIPv6AddressField An Ipv6 Address
CUSNFGUIDField A 128-bit GUID
CUSNFCommentField A user comment. This field can be used to insert comments into

your breakout.

30 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

4.5.5 Bit Fields

Unsniff supports bit fields of upto 32 bits wide. Bit fields are shown in a separate frame with a
detailed breakout of individual bits. An example of a bit-field is shown below.

Example : IP Flags/Frame Offset Field

The C++ class CUSNFFlagsField is used to model bit fields. You must first define a
CUSNFFlagsField – then add details about the individual bits within the bit-field.

Let us try to define the “IP Flags/Frame Offset” field shown above in both C++ and XML to make
it clear.

C++ Field Definition

CUSNFFlagsField * pF;
pF = new CUSNFFlagsFieldCUSNFFlagsFieldCUSNFFlagsFieldCUSNFFlagsField("Flags/Frame OffsetFlags/Frame OffsetFlags/Frame OffsetFlags/Frame Offset",
 "Flg/FOFlg/FOFlg/FOFlg/FO",
 FW_16BITS, FS_SUBLAYOUT);

 pF->AddChildAddChildAddChildAddChild(FID_UNUSED, new CUSNFNumericFieldCUSNFNumericFieldCUSNFNumericFieldCUSNFNumericField("UnusedUnusedUnusedUnused",
 FW_1BITS, FS_PLAIN));

 pF->AddChildAddChildAddChildAddChild(FID_DONTFRAG, new CUSNFNumericFieldCUSNFNumericFieldCUSNFNumericFieldCUSNFNumericField("Don’t FragmentDon’t FragmentDon’t FragmentDon’t Fragment",”DFDFDFDF”,
 FW_1BITS, FS_LABEL));

 pF->AddChildAddChildAddChildAddChild(FID_MOREFRAG, new CUSNFNumericFieldCUSNFNumericFieldCUSNFNumericFieldCUSNFNumericField("More FragmentsMore FragmentsMore FragmentsMore Fragments",”MMMM”,
 FW_1BITS, FS_LABEL));

 pF->AddChildAddChildAddChildAddChild(FID_FROFF, new CUSNFNumericFieldCUSNFNumericFieldCUSNFNumericFieldCUSNFNumericField("Frame OffsetFrame OffsetFrame OffsetFrame Offset",”OffOffOffOff”,
 FW_13BITS, FS_LABEL));
UserAddFieldDefUserAddFieldDefUserAddFieldDefUserAddFieldDef(FID_IP_FLAGS,pF);

Unsniff Plugin Developer’s Guide | 31

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

XML Field Definition

 <FieldDef name="Flags/Frame OffsetFlags/Frame OffsetFlags/Frame OffsetFlags/Frame Offset" shortname=”Flg/FoFlg/FoFlg/FoFlg/Fo”>
 <fieldtype>flagsflagsflagsflags</fieldtype>
 <styles>sublayoutsublayoutsublayoutsublayout</styles>

 <FieldDefs>

 <FieldDef name="UnusedUnusedUnusedUnused" >
 <fieldtype>NumericNumericNumericNumeric</fieldtype>
 <sizebits>1111</sizebits>
 </FieldDef>

 <FieldDef name="Don’t FragmentDon’t FragmentDon’t FragmentDon’t Fragment" shortname="DFDFDFDF">
 <fieldtype>NumericNumericNumericNumeric</fieldtype>
 <sizebits>1111</sizebits>
 <styles>labellabellabellabel</styles>
 </FieldDef>

 <FieldDef name="More FragmentsMore FragmentsMore FragmentsMore Fragments" shortname="MMMM">
 <fieldtype>NumericNumericNumericNumeric</fieldtype>
 <sizebits>1111</sizebits>
 <styles>labellabellabellabel</styles>
 </FieldDef>

 <FieldDef name="Frame OffsetFrame OffsetFrame OffsetFrame Offset" shortname="OffOffOffOff">
 <fieldtype>NumericNumericNumericNumeric</fieldtype>
 <sizebits>13131313</sizebits>
 <styles>labellabellabellabel</styles>
 <helptext>”Field Help for Frame Offset””Field Help for Frame Offset””Field Help for Frame Offset””Field Help for Frame Offset”</helptext>
 </FieldDef>

 </FieldDefs>
 </FieldDef>

Usage Notes:

1. Define the individual bit fields MSB to LSB. You can also define in the reverse order LSB
to MSB, but then you must specify the FS_REVERSE field style

2. You must account for every bit in the bitfield. If there are unused bits, create a
corresponding “unused” or “reserved” field

3. You cannot have any further nesting of the bit field. A bit field cannot contain records, or
other bitfields

4. The bit field must be of a fixed size between 4-32 bits

32 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

4.5.6 Enumerations

Enumerated fields are nothing but numeric fields with a meaningful text attached to each possible
value. Since this type of field is very commonplace, the Unsniff API provides special support for it.

If you are defining fields in C++, you must use the CUSNFEnumField class. An enum field
consists of {integer value} � {name, long name} mappings. You must also use the macros
USNF_BEGIN_ENUM_DEF, USNF_END_ENUM_DEF, ENUM_ENTRY,
ENUM_ENTRY_LONG to define your enum block.

For example consider the “Option Code” field in the BOOTP protocol. An excerpt of possible
values is shown below.

Option Name Long Name5
0 Pad -not set-
1 End End of Options
2 Time Offset -not set-
3 Router -not set-
4 Time Server -not set-
5 Name Server -not set-
- - -
116 DHCP Auto DHCP Auto Configuration

C++ Field Definition

// Define all enums in this block// Define all enums in this block// Define all enums in this block// Define all enums in this block
USNF_BEGIN_ENUM_DEF(OptionUSNF_BEGIN_ENUM_DEF(OptionUSNF_BEGIN_ENUM_DEF(OptionUSNF_BEGIN_ENUM_DEF(OptionCodes)Codes)Codes)Codes)
 ENUM_ENTRYENUM_ENTRYENUM_ENTRYENUM_ENTRY(0, “Pad”)
 ENUM_ENTRY_LONGENUM_ENTRY_LONGENUM_ENTRY_LONGENUM_ENTRY_LONG(1, “End”, “End of Options”)
 ENUM_ENTRY(2, “Time Offset”)
 ENUM_ENTRY(3, “Router”)
 ENUM_ENTRY(4, “Time Server”)
 ENUM_ENTRY(5, “NameServer”)
 - - -
 ENUM_ENTRY_LONG(116, “DHCP Auto”, “DHCP Auto Configuration”)
USNF_END_ENUM_DEF()USNF_END_ENUM_DEF()USNF_END_ENUM_DEF()USNF_END_ENUM_DEF()

// Create an enum field using the block defined above
UserAddFieldDef(FID_OPTION_CODE,
 new CUSNFEnumFieldCUSNFEnumFieldCUSNFEnumFieldCUSNFEnumField(“Option Code”,
 “Opt”,
 FW_8BITS,
 FS_LABEL|FS_FILTER,
 USE_ENUM(OptionCodesUSE_ENUM(OptionCodesUSE_ENUM(OptionCodesUSE_ENUM(OptionCodes));

5 In most cases, you can leave the long name blank. Unsniff will re-use the short name. If you
specify both long and short names, Unsniff will display either of the two based on available space.

Unsniff Plugin Developer’s Guide | 33

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

XML Field Definition

 <FieldDef name="Option CodeOption CodeOption CodeOption Code" shortname=”OptOptOptOpt”>
 <fieldtype>enumenumenumenum</fieldtype>
 <styles>filter,protocolitem,labelfilter,protocolitem,labelfilter,protocolitem,labelfilter,protocolitem,label</styles>
 <sizebits> 8 </sizebits>

 <EnumListEnumListEnumListEnumList>

 <EnumEnumEnumEnum value="0000" name=”PadPadPadPad” />
 <Enum value="1111" name=”EndEndEndEnd” longname=”End of OptionsEnd of OptionsEnd of OptionsEnd of Options“/>
 <Enum value="2222" name=”Time OffsetTime OffsetTime OffsetTime Offset” />
 <Enum value="3333" name=”RouterRouterRouterRouter” />
 <Enum value="4444" name=”Time ServerTime ServerTime ServerTime Server” />
 <Enum value="5555" name=”Name ServerName ServerName ServerName Server” />

 <Enum value="116116116116" name=”DHCP AutoDHCP AutoDHCP AutoDHCP Auto” longname=”DHCP Auto Config=”DHCP Auto Config=”DHCP Auto Config=”DHCP Auto Config”/>
 </EnumListEnumListEnumListEnumList>

</FieldDef>

Usage Notes:

Filtering
If an enumerated field also has the FS_FILTER style, then Unsniff automatically allows the user
to construct a display filter using a specially designed combo box that allows multiple selections.

� Tip
Performance Hint
We recommend that you specify your enumeration lists in a sorted ascending order. This
can speed up your plugin – because the Unsniff API can search the list faster.

� Tip
Binary enumerations
You can also define enumerated values for bit fields. This can greatly increase the user-
friendliness of the decode. For example: { 1= Enable, 0= Disable} { 1= Do Discovery; 0=
Do not do discovery}.

34 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

4.5.7 Records

Many protocols consists of a header and a series of records. These records are nothing but a
structured group of fields. It makes a lot of sense to keep the concept of records intact while
displaying protocols.

�� Records are displayed in the tree view as separate collapsible nodes containing the child
fields

�� Records are shown the visual breakout using a novel coloring scheme that makes them
jump out

�� Records can be nested

Examples of records:
A DNS QUERY response packet showing records

Tree view of record Visual Breakout showing record coloring in action

The C++ class CUSNFRecordField is used to define records. It can hold nested records, so
you can add another CUSNFRecordField class to it as a child.

In the example below: we will create a record called My Record with two children name and ID.

C++ Field Definition

CUSNFRecordField * pRec;
pRec = new CUSNFRecordFieldCUSNFRecordFieldCUSNFRecordFieldCUSNFRecordField("My Record",
 "MyRec”MyRec”MyRec”MyRec”);

 pRec ->AddChildAddChildAddChildAddChild(FID_1, new CUSNFStringFieldCUSNFStringFieldCUSNFStringFieldCUSNFStringField("NameNameNameName",
 FW_AUTO, FS_LABEL));

 pRec ->AddChildAddChildAddChildAddChild(FID_2, new CUSNFNumericFielCUSNFNumericFielCUSNFNumericFielCUSNFNumericFieldddd("IDIDIDID",
 FW_16BITS, FS_LABEL));

UserAddFieldDefUserAddFieldDefUserAddFieldDefUserAddFieldDef(FID_MY_RECORD, pRec);

Unsniff Plugin Developer’s Guide | 35

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

XML Field Definition

 <FieldDef name="My Record” My Record” My Record” My Record” shortname=”MyRec”>
 <fieldtype>recordrecordrecordrecord</fieldtype>

 <FieldDefs>

 <FieldDef name="NameNameNameName" >
 <fieldtype>stringstringstringstring</fieldtype>
 <styles>labellabellabellabel</styles>
 </FieldDef>

 <FieldDef name="IDIDIDID" >
 <fieldtype>NumericNumericNumericNumeric</fieldtype>
 <sizebits>16161616</sizebits>
 <styles>labellabellabellabel</styles>
 </FieldDef>

 </FieldDefs>
 </FieldDef>

Record Display Format
A record is nothing but a collection of child fields. However, records themselves may have
meanings as an aggregate entity. Unsniff allows you optionally construct a string value for record
fields based on the values of the child fields. This is useful when dealing with TLV style records,
or ASN.1 style records. This is best illustrated by an example.

Consider the ASN.1 field from the X.509v3 Digital Certificate named attributeTypeAndValue, this
is a record field with two children. The first child is a type and second type is a value
corresponding to that type.

 Record with two child fields

Now you may wish to assign a value to the attributeTypeAndValue based on the child fields.
Unsniff lets you construct powerful descriptions for record fields using a display format. The
display format is nothing but a string interspersed with $<child-field-number> items. In the
example above, we can construct a display format “$1 = $2”. This will assign a clear meaning
to the record field. The values of record fields are seen when the tree is collapsed in the tree view
as shown below.

 Record with display format $1=$2

36 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

In order to use record fields you must attach a <recorddisplayformat> tag to the XML definition of
the record field. The XML fragment used to achieve the above effect is shown below.

- <FieldDef name="AttributeTypeAndValue">
 <fieldtype>ASNBERSequence</fieldtype>
 <recorddisplayformat>$1 = $2</recorddisplayformat>
- <FieldDefs>

 <FieldDef name="type" ref="AttributeType" />
 <FieldDef ref="DirectoryString" />

 </FieldDefs>
 </FieldDef>

In C++: You can simply construct an arbitrary string and call CUSNFField::SetDisplayValString() .

Usage Notes:

There are two ways to use records to breakout fields

�� You can use a CUSNFRecordField and add it to the field stack
In the example above you would call:

FieldStm << FID_MY_RECORD; // For C++
FieldStm << “My Record”; // For XML

�� You can use the stream record functions and push individual fields

FieldStm << STM_BEGIN_RECORDSTM_BEGIN_RECORDSTM_BEGIN_RECORDSTM_BEGIN_RECORD(“My Record”)

 << FID_1
 << FID_2
 << STM_END_RECORDSTM_END_RECORDSTM_END_RECORDSTM_END_RECORD;

STM_BEGIN_RECORD and STM_END_RECORD are specially defined stream operators
that work with records. STM_BEGIN_RECORD starts a record – all fields pushed after that
point are automatically made child fields of that record. STM_END_RECORD ends the
record.

Unsniff Plugin Developer’s Guide | 37

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

4.5.8 Using Variables

You can use variables to control properties of other fields. Using variables you can create fields
that repeat a certain number of times, specify the size of fields, create conditional fields, or select
a field from a set of choices. Variables are a powerful tool.

How Variables Work
While defining fields you can also attach named variables to the value of those fields. When a
field is pushed onto the field stack, the Unsniff API will check if there is a variable attached to that
field. If there is a variable; then the value of the field is saved to the variable. This variable can be
referred to in later fields. The lifetime of the variable is limited to only one packet or PDU.

��Info
Variables can contain numeric or string values.

Example: In the example below, we save the value of the field “Management Length” in a
variable called “MgmtLength”

C++

 UserAddFieldDef (FID_MG_LENGTHFID_MG_LENGTHFID_MG_LENGTHFID_MG_LENGTH,

 new CUSNFNumericField("Management Length",
 "Len",
 FW_8BITS,

 FS_PLAIN));

 UserCreateVariableUserCreateVariableUserCreateVariableUserCreateVariable(FID_MG_LENGTHFID_MG_LENGTHFID_MG_LENGTHFID_MG_LENGTH,"MgmtLengthMgmtLengthMgmtLengthMgmtLength");

XML

 <FieldDef name="Management Length" shortname=”Len” >
 <fieldtype>Numeric</fieldtype>
 <sizebits>8</sizebits>
 <styles>label</styles>
 <variable>MgmtLength</variable><variable>MgmtLength</variable><variable>MgmtLength</variable><variable>MgmtLength</variable>
 </FieldDef>

Using Variables

Variables are typically used in expressions. These expressions are typically used in autosize
fields, autorepeat fields, conditional fields, etc. These are explained in Sec 6.3.7 : FieldDef in
detail.

�� To refer to a variable you have to prefix the name with a $ sign. So in the above example:
to access the variable MgmtLength – you must use $MgmtLength

While pushing fields on to the stack variables are automatically initialized as shown below.

FieldStm << FID_MG_LENGTH;
FieldStm << { .. other fields .. } ; // insert other fields if you want
UserGetVariableValueUserGetVariableValueUserGetVariableValueUserGetVariableValue(“$MgmtLength$MgmtLength$MgmtLength$MgmtLength”); // Returns the integer value of Length

38 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

4.5.8.1 System Variables

The Unsniff API automatically gives you access to several system variables. You can use these
variables for any purpose. The following table lists all the system variables.

Variable Name Description
$SYSTEM_NEXT_BYTE The next byte in the frame.
$SYSTEM_NEXT_WORD The next 16 bit word in the frame
$SYSTEM_NEXT_DWORD The next 32 bit word in the frame
$SYSTEM_FRAME_TOTAL_BYTES The total number of bytes in the frame (ie

packet or PDU)
$SYSTEM_FRAME_REMAINING_BYTES The number of bytes yet to be accounted for

in the current frame
$SYSTEM_FRAME_REMAINING_BITS The number of bits yet to be accounted for

in the current frame

Using System Variables
An example of using system variables is shown below. In this example, the field “Media Payload”
is a data field that occupies the rest of the frame. Typically you would push this field after all the
other fields have been accounted for.

XML

 <FieldDef name="Media Payload">
 <fieldtype>binary</fieldtype>
 <sizeexpr>8*$SYSTEM_FRAME_REMAINING_BYTES</size <sizeexpr>8*$SYSTEM_FRAME_REMAINING_BYTES</size <sizeexpr>8*$SYSTEM_FRAME_REMAINING_BYTES</size <sizeexpr>8*$SYSTEM_FRAME_REMAINING_BYTES</sizeexpr>expr>expr>expr>
 <styles>compressed-visual,novalue</styles>

 </FieldDef>

Unsniff Plugin Developer’s Guide | 39

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

4.5.9 Variable Length Fields

This is one of the most common patterns you will encounter while designing protocol plugins. The
size of a field {Field-B} is governed by some preceding field {Field-A}. The size can usually be
represented as a mathematical expression. To model such fields:

�� attach a variable to the “controller field” {Field-A}
�� define the dynamic length field {Field-B} with a sizebits value of FW_AUTOSIZE
�� set sizeexpr of {Field-B} to a mathematical expression using the variable attached to

{Field-A}

Example:

Consider the following case involving the SMB Protocol. The length of the field SecurityBlob is
determined by a preceding (not necessarily immediately) field called SecurityBlobLength. The
value of the field SecurityBlobLength specifies the length in bytes of the field SecurityBlob.

The way to handle this using the Unsniff API is:

�� Create a variable “SecBlobLength” and attach it to the field SecurityBlobLength

�� Create a field SecurityBlob with a size of FW_AUTOSIZE

�� Attach a size expression (“8 * $SecBlobLength”) to the field. Note that we have to

multiply the length by 8 to yield the value in bits.

�� Now you can just push the fields normally on the stack without worrying about length
manipulations

FieldStm << FID_SEC_BLOB_LENFID_SEC_BLOB_LENFID_SEC_BLOB_LENFID_SEC_BLOB_LEN << FID_BYTE_COUNT
 << FID_SEC_BLOBFID_SEC_BLOBFID_SEC_BLOBFID_SEC_BLOB << FID_NATIVE_OS << etc..;

40 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

The definition of variable length fields is shown below

C++

 UserAddFieldDef (FID_SEC_BLOB_LENGTFID_SEC_BLOB_LENGTFID_SEC_BLOB_LENGTFID_SEC_BLOB_LENGTHHHH,

 new CUSNFNumericField("SecurityBlobLength",
 "SecBlobLen",
 FW_16BITS,

 FS_HOSTORDER6));

 UserCreateVariableUserCreateVariableUserCreateVariableUserCreateVariable(FID_SEC_BLOB_LENGTHFID_SEC_BLOB_LENGTHFID_SEC_BLOB_LENGTHFID_SEC_BLOB_LENGTH,"SecBlobLengthSecBlobLengthSecBlobLengthSecBlobLength");

 UserAddFieldDef (FID_SEC_BLOBFID_SEC_BLOBFID_SEC_BLOBFID_SEC_BLOB,

 new CUSNFNumericField("Security Blob",
 FW_AUTOSIZE,

 FS_PLAIN));

 UserSetSizeExprUserSetSizeExprUserSetSizeExprUserSetSizeExpr(FID_SEC_BLOBFID_SEC_BLOBFID_SEC_BLOBFID_SEC_BLOB," 8 * $SecBlobLengthSecBlobLengthSecBlobLengthSecBlobLength");

XML

 <FieldDef name="SecurityBlobLength" shortname=”SecBlobLen” >
 <fieldtype>Numeric</fieldtype>
 <sizebits>16</sizebits>
 <styles>hostorder</styles>
 <variable>SecBlobLength</variable><variable>SecBlobLength</variable><variable>SecBlobLength</variable><variable>SecBlobLength</variable>
 </FieldDef>

 <FieldDef name="Security Blob" >
 <fieldtype>binary</fieldtype>
 <sizeexpr>8 * $SecBlobLength</si <sizeexpr>8 * $SecBlobLength</si <sizeexpr>8 * $SecBlobLength</si <sizeexpr>8 * $SecBlobLength</sizeexpr>zeexpr>zeexpr>zeexpr>
 </FieldDef>

��Tip
As in other cases, if you are writing a C++ plugin you can handle variable length fields
without the use of variables and expressions. This will however involve writing a small
amount of code7.

const LPBYTE pSecBlobLength = UserGetCurrentFramePtr();
USHORT SecBlobLen = PTRVAL_USHORT(pSecBlobLength);
UserSetFieldSize(FID_SEC_BLOB, TOBITS(SecBlobLen));
FieldStm << FID_SEC_BLOB_LEN << FID_BYTE_COUNT << FID_SEC_BLOB;

6 We use FS_HOSTORDER because the SMB protocol encodes the 16 bit number in little endian format.
7 Unsniff main design principle is to separate the field definitions from the process of decoding a given
packet. This violates that principle. However, there may be times you want to go down to this level for
performance reasons or when it is not possible to support your protocol using this technique.

Unsniff Plugin Developer’s Guide | 41

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

4.5.10 Auto Repeat Fields

Many protocols define a set of fields or records that repeat a certain number of times.

There are two variations of the above pattern:

�� Number of repeats can be expressed as a function of some preceding field
�� Repeat a given field until the end of frame

Repeat a field ‘n’ times

You may have noticed that the structure shown below is very commonplace.

typedef struct Message_T
{
 USHORT RecordCountRecordCountRecordCountRecordCount;
 struct {
 UCHAR MsgType;
 ULONG TxId;
 . . .
 . . .
 } OneRecord [RecordCount];} OneRecord [RecordCount];} OneRecord [RecordCount];} OneRecord [RecordCount];
} Msg_T;

To support the above pattern

C++

 UserAddFieldDef (FID_RECORD_COUNTFID_RECORD_COUNTFID_RECORD_COUNTFID_RECORD_COUNT,

 new CUSNFNumericField("RecordCount",
 FW_16BITS,

 FS_PLAIN));

 UserCreateVariableUserCreateVariableUserCreateVariableUserCreateVariable(FID_RECORD_COUNTFID_RECORD_COUNTFID_RECORD_COUNTFID_RECORD_COUNT,"RecCntRecCntRecCntRecCnt");

 // Create the OneRecord struction
 CUSNFRecordField * pOneRec = new CUSNFRecordField (//. . .
 pOneRec->AddChild(FID_MSG_TYPE, // . .
 pOneRec->AddChild(FID_TX_ID, // . .
 // add other children of record
 UserAddFieldDef (FID_ONE_RECFID_ONE_RECFID_ONE_RECFID_ONE_REC,pOneRec);

 UserSetRepsExUserSetRepsExUserSetRepsExUserSetRepsExpressionpressionpressionpression(FID_ONE_RECFID_ONE_RECFID_ONE_RECFID_ONE_REC, "$RecCntRecCntRecCntRecCnt");

XML

 <FieldDef name="RecordCount" >
 <fieldtype>Numeric</fieldtype>
 <sizebits>16</sizebits>
 <variable>RecCnt</variable><variable>RecCnt</variable><variable>RecCnt</variable><variable>RecCnt</variable>
 </FieldDef>

 <FieldDef name="OneRecord" >
 <fieldtype>Record</fieldtype>
 <repsexpr>$RecCnt</sizeexpr> <repsexpr>$RecCnt</sizeexpr> <repsexpr>$RecCnt</sizeexpr> <repsexpr>$RecCnt</sizeexpr>
 <FieldDefs>
 <FieldDef name=”MsgType” >
 . . .
 </FieldDef>

 <FieldDef name=”TxnId” >
 . . .
 </FieldDef>

42 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

 </FieldDefs>
 </FieldDef>

Usage Notes
It is very easy to use the above technique to decode a packet. You just have to push the fields
once onto the field stack. The auto-repeat field is magically repeated the required number of
times.

FieldStm << FID_RECORD_COUNTFID_RECORD_COUNTFID_RECORD_COUNTFID_RECORD_COUNT

 << FID_ONE_REC FID_ONE_REC FID_ONE_REC FID_ONE_REC // .. will automatically repeat the
 // field required number of times

 << // .. other fields

Unsniff Error Checking will ensure that junk values or incorrect use of variables do not cause any
grief – so you can use this technique without worrying about overflows and other errors.

��Tip
Alternate ways of handling this are always available to C++ plugins. This will however
involve writing a small amount of code8.

const LPBYTE pPtr = UserGetCurrentFramePtr();
USHORT RecordCountRecordCountRecordCountRecordCount = HPTRVAL_USHORT(pPtr);
FieldStm << FID_RECORD_COUNT;FieldStm << FID_RECORD_COUNT;FieldStm << FID_RECORD_COUNT;FieldStm << FID_RECORD_COUNT;
While (RecordCountWhile (RecordCountWhile (RecordCountWhile (RecordCount--------) {) {) {) {
 FieldStm << FID_ONE_RECORD;FieldStm << FID_ONE_RECORD;FieldStm << FID_ONE_RECORD;FieldStm << FID_ONE_RECORD;
}}}}

Repeat a till end of frame

This is another common pattern. The length of the frame itself implicitly defines the number of
times a field repeats.

Consider the ARP protocol (shown on right):

You can observe that the Address Record
Repeats till the end of frame. The number of times
this record repeats cannot be deduced by looking
at any single field in the packet.

The pattern used here is:

�� Repeat the field “Address Record” until

the end of frame – in other words. Fill the
remainder of the frame with “Address
Records”

8 Resort to this technique only if you need to – for performance reasons or for real complex scenarios. This
violates the Unsniff principle of having intelligent self sufficient fields.

Unsniff Plugin Developer’s Guide | 43

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

The Unsniff API uses the FS_FILL style to accomplish the job. Any field which has the FS_FILL
style is automatically repeated till the end of frame. For the above ARP example:

C++

CUSNFRecordField * pRec;
pRec = new CUSNFRecordField("Address Record",
 FS_FILLFS_FILLFS_FILLFS_FILL);

 pRec ->AddChild(FID_MAC, new CUSNFMacAddressField("MAC Address",
 FS_LABEL));

 pRec ->AddChild(FID_IP, new CUSNFIPAddressField("IP Address",
 FS_LABEL));

UserAddFieldDef(FID_ADDRESS_RECORD, pRec);

XML

 <FieldDef name="Address Record" >
 <fieldtype>Record</fieldtype>
 <styles>fill</styles> <styles>fill</styles> <styles>fill</styles> <styles>fill</styles>

 <FieldDefs>
 <FieldDef name=”MAC Address” >
 <fieldtype> macaddress</fieldtype>
 </FieldDef>
 <FieldDef name=”IP Address” >
 <fieldtype> ipaddress</fieldtype>
 </FieldDef>
 </FieldDefs>

 </FieldDef>

Usage Notes
The auto-repeat field is magically repeated till the end of frame is reached

FieldStm << FID_ADDRESS_RECORD ; // will automatically repeatFID_ADDRESS_RECORD ; // will automatically repeatFID_ADDRESS_RECORD ; // will automatically repeatFID_ADDRESS_RECORD ; // will automatically repeat
 // till end of the frame // till end of the frame // till end of the frame // till end of the frame

��Tip
Alternate ways of handling this are always available to C++ plugins.

While (! UserIsBreakoutComplete()) {While (! UserIsBreakoutComplete()) {While (! UserIsBreakoutComplete()) {While (! UserIsBreakoutComplete()) {
 FieldStm << FID_ADDRESS_RECORD;FieldStm << FID_ADDRESS_RECORD;FieldStm << FID_ADDRESS_RECORD;FieldStm << FID_ADDRESS_RECORD;
}}}}

Note:
If a “FS_FILL style field” is a child field of a record. Then the field is auto-repeated to the length
of the record – not to the length of the entire frame.

44 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

4.5.11 Choice Fields

A common pattern in protocols is when a field (eg message type) is used to pick a message
format from a selection of choices. We have seen how a preceding field can influence the size
(Sec 4.5.8) and number of repetitions (Sec 4.5.9) of a field. Similarly, Choice Fields are used to
determine the Structure of a message from a set of possible choices.

Consider the following example from the SMB protocol:

The field LockType determines whether the record LOCKING_ANDX_RANGE has a structure
of :

�� LOCKING_ANDX_RANGE_LARGE_FILE - if LockType = 0x10
�� LOCKING_ANDX_RANGE_SMALL_FILE - for all other values of LockType

The class that is used to handle Choice fields in the Unsniff API is called CUSNFChoiceField.
The way to handle this field is:

�� Define a CUSNFChoiceField and attach a “choice expression” to it (both string and
numeric variables are supported)

�� Add all the potential choices as children of the choicefield.
�� Identify each child with a choiceval. This field will become active if the choice expression

matches this choiceval
�� Optionally identify one field as the default choice. This field will become active if none of

the choiceval-s specified for the child fields matches the choice expression result.

C++

UserAddFieldDef (FID_LOCK_TYPE,

 new CUSNFNumericField("LockType",
 FW_8BITS,

 FS_PLAIN));
UserCreateVariable(FID_LOCK_TYPE,"LockTypeLockTypeLockTypeLockType");

pChoi = new CUSNFChoiceField("LOCKING_ANDX_RANGE");pChoi = new CUSNFChoiceField("LOCKING_ANDX_RANGE");pChoi = new CUSNFChoiceField("LOCKING_ANDX_RANGE");pChoi = new CUSNFChoiceField("LOCKING_ANDX_RANGE");

 pChoi ->AddChild(FID_LOCKING_ANDX_RANGE_SMALL_FILE,
 //.. add the small file record structure here;

 pChoi ->AddChild(FID_LOCKING_ANDX_RANGE_LARGE_FILE,
 //.. add the large file record structure here;

UserAddFieldDef(FID_LOCKING_ANDX_RANGE, pChoi);

UserSetChoiceExpressiUserSetChoiceExpressiUserSetChoiceExpressiUserSetChoiceExpression(FID_LOCKING_ANDX_RANGE,”$LockType”);on(FID_LOCKING_ANDX_RANGE,”$LockType”);on(FID_LOCKING_ANDX_RANGE,”$LockType”);on(FID_LOCKING_ANDX_RANGE,”$LockType”);
UserSetChoiceVal(FID_LOCKING_ANDX_RANGE_SMALL_FILE,”default”);UserSetChoiceVal(FID_LOCKING_ANDX_RANGE_SMALL_FILE,”default”);UserSetChoiceVal(FID_LOCKING_ANDX_RANGE_SMALL_FILE,”default”);UserSetChoiceVal(FID_LOCKING_ANDX_RANGE_SMALL_FILE,”default”);
UserSetChoiceVal(FID_LOCKING_ANDX_RANGE_LARGE_FILE,”0x10”);UserSetChoiceVal(FID_LOCKING_ANDX_RANGE_LARGE_FILE,”0x10”);UserSetChoiceVal(FID_LOCKING_ANDX_RANGE_LARGE_FILE,”0x10”);UserSetChoiceVal(FID_LOCKING_ANDX_RANGE_LARGE_FILE,”0x10”);

Unsniff Plugin Developer’s Guide | 45

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

XML

 <FieldDef name="LOCKING_ANDX_RANGELOCKING_ANDX_RANGELOCKING_ANDX_RANGELOCKING_ANDX_RANGE" >
 <fieldtype>choice</fiel <fieldtype>choice</fiel <fieldtype>choice</fiel <fieldtype>choice</fieldtype> dtype> dtype> dtype>
 <choiceexpr> $LockType </choiceexpr> <choiceexpr> $LockType </choiceexpr> <choiceexpr> $LockType </choiceexpr> <choiceexpr> $LockType </choiceexpr>

 <FieldDefs>

 <FieldDef name=”LOCKING_ANDX_RANGE_SMALL_FILELOCKING_ANDX_RANGE_SMALL_FILELOCKING_ANDX_RANGE_SMALL_FILELOCKING_ANDX_RANGE_SMALL_FILE” >
 <fieldtype> record </fieldtype>
 <choiceval> de <choiceval> de <choiceval> de <choiceval> default </choiceval>fault </choiceval>fault </choiceval>fault </choiceval>
 . . define record here . .
 </FieldDef>

 <FieldDef name=”LOCKING_ANDX_RANGE_LARGE_FILELOCKING_ANDX_RANGE_LARGE_FILELOCKING_ANDX_RANGE_LARGE_FILELOCKING_ANDX_RANGE_LARGE_FILE” >
 <fieldtype> record </fieldtype>
 <choiceval> 0x10 </choice <choiceval> 0x10 </choice <choiceval> 0x10 </choice <choiceval> 0x10 </choiceval>val>val>val>
 . . define record here . .
 </FieldDef>

 </FieldDef>

Usage Notes
Once defined a choice field is really easy to use. You just push the choice field onto the field
stack. Internally the correct choice is selected (or an error is generated if no suitable choice was
found and if no default choice was specified)

FieldStm << FID_LOCKING_ANDX_RANGE ; // will automatically selectFID_LOCKING_ANDX_RANGE ; // will automatically selectFID_LOCKING_ANDX_RANGE ; // will automatically selectFID_LOCKING_ANDX_RANGE ; // will automatically select
 // the LARGE or SMALL version // the LARGE or SMALL version // the LARGE or SMALL version // the LARGE or SMALL version
 // based on the LockType // based on the LockType // based on the LockType // based on the LockType

��Tip
You can also specify string choices. This is useful when you are dealing with protocols
that choose between several structures based on an OID.

The equivalent C++ way of accomplishing the same thing without choice fields is:

BYTE lockType = PTRVAL_UCHAR(UserGetCurrentFramePtr());
. .
switch (lockType)
{
 case 0x10: FieldStm << FID_ANDX_LOCKING_RANGE_LARGE_FILE; break;

 default: FieldStm << FID_ANDX_LOCKING_RANGE_SMALL_FILE; break;
}}}}

46 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

String Choices

Choice fields can also be used with string variables. A common usage is when dealing with
ASN.1 OIDs. In the snippet below the field extnValueChoice, can take on several different
structures depending on the ExtensionID.

• If $ExtensionID (a string variable) is “.2.5.29.15”, then extnValueChoice is a KeyUsage
• For all other $ExtensionID values, extnValueChoice is an extnValue structure

- <FieldDef name="extnValueChoice">

 <fieldtype>Choice</fieldtype>
 <choiceexpr>$ExtensionID</choiceexpr>
- <FieldDefs>

- <FieldDef ref="KeyUsage">
<choicevalstring>.2.5.29.15</choicevalstring>

</FieldDef>
- <FieldDef name="extnValue">

 <fieldtype>ASNBER</fieldtype>
 <choicevalstring>default</choicevalstring>
 <styles>compressed-visual</styles>

 </FieldDef>
 </FieldDefs>

Unsniff Plugin Developer’s Guide | 47

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

4.5.12 Conditional Fields

Sometimes a preceding field determines whether or not a field is even present. A common
example is for protocols requiring some kind of security block. A preceding field usually
determines if this block is even present. For pure C++ plugins you can simply use an If statement
The Unsniff API offers the Conditional field for use with XML (and C++ if you wish).

Consider the following example from the SMB protocol:

Only when the capabilities field has the Extended Security bit (Xsec bit) set – is the field GUID
present. If the Ext Sec bit is 0, then the GUID field will not be present.

Conditional fields are designed to handle just this pattern. You have seen how the Size,
Repetitions, and Structure of a field can be influenced by a preceding field - you can use the
Conditional field to control even the presence of a field.

To handle conditional fields :
�� Create a variable and attach it to the “controlling” field. You can have more than one

controlling field
�� Attach an expression to the conditional field using the variable defined above
�� The conditional expression must evaluate to a TRUE or FALSE. It must be alogical

expression

C++

// Assume the field “Ext Sec” is already defined as FID_XSEC
UserCreateVariable (FID_XSEC, “Xsec”);

UserAddFieldDef (FID_GUID,

 new CUSNFGUIDField("GUID", FS_PLAIN);

UserSetCondExpression(FID_GUID,” $Xsec==1”);

XML

<FieldDef name="GUIDGUIDGUIDGUID" >
 <fieldtype>guid</fieldtype> <fieldtype>guid</fieldtype> <fieldtype>guid</fieldtype> <fieldtype>guid</fieldtype>
 <condition> $Xsec == 1 </condition> <condition> $Xsec == 1 </condition> <condition> $Xsec == 1 </condition> <condition> $Xsec == 1 </condition>
 <helptext> A globally unique identifier assigned to the server
 </helptext>

48 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

Usage Notes
You can just push this field onto the stack as if it were present. If the logical expression evaluates
to false – then the conditional field will just be ignored.

FieldStm << FID_SERVER_TIME_ZONE
 << FID_KEY_LEN
 << FID_BYTE_COUNT
 << FID_GUID ; // This field will just be ignoredFID_GUID ; // This field will just be ignoredFID_GUID ; // This field will just be ignoredFID_GUID ; // This field will just be ignored
 // if the expression $Xse // if the expression $Xse // if the expression $Xse // if the expression $Xsec == 1 c == 1 c == 1 c == 1
 // evaluates to FALSE // evaluates to FALSE // evaluates to FALSE // evaluates to FALSE

The equivalent C++ way of accomplishing the same thing without using conditional fields is:

// Check the Ext Sec bit (Bit # 31 of the Capabilities flag)
DWORD Cap = HPTRVAL_DWORD(UserGetCurrentFramePtr());

. .
if (Cap & 0x80000000) {if (Cap & 0x80000000) {if (Cap & 0x80000000) {if (Cap & 0x80000000) {
 FieldStm << FID_GUID; FieldStm << FID_GUID; FieldStm << FID_GUID; FieldStm << FID_GUID;
}}}}

You can choose to do it either way. For C++ plugins you may want to just use an if statement as
shown above instead of using a conditional field if your decode performance is unacceptable.

About Conditional expressions
Conditional expressions are logical expressions. Unsniff has rich support for parsing logical
expressions. You can specify any expression using any number of variables.

Some examples:

�� $Xsec == 1 (shown above)
�� $Flags > 0x08000000
�� $Xsec == 1 && $MyType <= 2

4.5.13 External Fields

Sometimes we need “outside help” to decode a certain block of a bytes. This is pretty common in
protocols that carry security blocks inside them. In such cases, we use an external field. The
length and structure of an external field is defined by a different plugin.

An example is the SPNEGO block within LDAP. In the case of LDAP, SPNEGO is only one of
several possible mechanisms. It is not the business of the author of the LDAP protocol to also
decode all possible security mechanisms. This is an excellent candidate for the external field.

In the example:

�� The Protocol ID for the GSSAPI-SPNEGO protocol is {B43274B2{B43274B2{B43274B2{B43274B2----BC78BC78BC78BC78----4488448844884488----9339933993399339----

87D5FE259340}”.87D5FE259340}”.87D5FE259340}”.87D5FE259340}”. This is a well known value that is published on the Unsniff website and
also available in the Unsniff API.

�� The plugin for GSSAPI-SPNEGO defines a top level field called “GSSAPI-SPNEGO”.

The name of the external field is used to match the correct field in the external plugin.

Unsniff Plugin Developer’s Guide | 49

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

In the Unsniff API, the class CUSNFExternalField models the external field.

C++

CUSNFExternalField * pSpnego =,

 new CUSNFExternalField("GSSAPI_SPNEGO",
 FS_PLAIN);

UserAddFieldDef(FID_SPNEGO, pSpnego);
PSpNego->SetProtIDString(“{B43274B2“{B43274B2“{B43274B2“{B43274B2----BC78BC78BC78BC78----4488448844884488----9393939339393939----87D5FE259340}”);87D5FE259340}”);87D5FE259340}”);87D5FE259340}”);

XML

<FieldDef name="GSSAPIGSSAPIGSSAPIGSSAPI----SPNEGOSPNEGOSPNEGOSPNEGO" >
 <fieldtype> external </fieldtype> <fieldtype> external </fieldtype> <fieldtype> external </fieldtype> <fieldtype> external </fieldtype>
 <protid>{B43274B2 <protid>{B43274B2 <protid>{B43274B2 <protid>{B43274B2----BC78BC78BC78BC78----4488448844884488----9339933993399339----87D5FE259340}</protid>87D5FE259340}</protid>87D5FE259340}</protid>87D5FE259340}</protid>
</FieldDef>

Usage Notes
This is a very powerful mechanism. You can just push the external field as if you had decoded it
yourself. Behind the scenes, Unsniff loads the required plugin and asks it to decode the bytes
from the current frame position. After the external plugin is done, control again passes to your
plugin. You can then proceed to add other fields, blissfully unaware of what just happened. The
code snippet to use an external field is shown below:

FieldStm << FID_SPNEGO;

50 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

4.5.14 ASN.1

ASN.1 is by far the most important standardized structure you will see as far as network protocols
are concerned. ASN.1 stands for Abstract Syntax Notation One. Many protocols such as SNMP,
LDAP, GSSAPI depend on this standard.

�� The current release of Unsniff only supports the Basic Encoding Rules of ASN.1

��Tip
As with other fields – you can write a plugin for protocols using ASN.1 with C++ or XML.
The Unsniff Protocol Plugin XML Specification is very comprehensive. You can translate
almost any ASN.1 specification completely to XML. We may even develop a tool for this
translation at some time in the future.

The ASN.1 field types supported by Unsniff are:

�� CUSNFAsnField
�� CUSNFAsnGroupField
�� CUSNFAsnHeaderField
�� CUSNFAsnChoiceField
�� CUSNFAsnSetField
�� CUSNFAsnWeakRefField

This table shows the mapping of ASN.1 types to Unsniff types

ASN.1 Type Unsniff Class XML Tag <fieldtype>
All Primitive types CUSNFAsnField ASNBER
SEQUENCE, SEQUENCE OF CUSNFAsnGroupField ASNBERSequence
SET, SET OF CUSNFAsnSetField ASNBERSet
CHOICE CUSNFAsnChoiceField ASNBERChoice
Header only Tag + Length CUSNFAsnHeaderField - not available -
Self Referential ASN types CUSNFAsnWeakRefField Automatically done
BIT STRING CUSNFAsnBitField ASNBERBit

Unsniff Plugin Developer’s Guide | 51

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

4.5.14.1 UNIVERSAL Types

These are the basic types defined for ASN.1. Unsniff can handle all these types automatically,
you do not have to specify which of the UNIVERSAL types a field represents9. Unsniff can
automatically deduce it by looking at the ASN Tag present in the packet.

Example :
Consider the AttributeType field used in the LDAPv3 protocol. The ASN.1 for LDAPv3 defines
AttributeType as:

AttributeType ::= LDAPString

Reading the ASN.1 specification further, we find that LDAPString is defined as:

LDAPString := OCTET STRING

Therefore AttributeType is also of type OCTET STRING. Since this is a built in ASN.1 type,
Unsniff can handle it using the general purpose CUSNFAsnField class.

C++

UserAddFieldDef(FID_ATTR_TYPE, new CUSNFAsnField (“Attribute Type”
 “Attr Type”,
 FS_LABEL);

XML

<FieldDef name="Attribute TypeAttribute TypeAttribute TypeAttribute Type" shortname=”Attr Type”Attr Type”Attr Type”Attr Type” >
 <fieldtype> ASNBER </fieldtype> <fieldtype> ASNBER </fieldtype> <fieldtype> ASNBER </fieldtype> <fieldtype> ASNBER </fieldtype>
 <styles> label </styles>
</FieldDef>

Usage Notes:
All ASN.1 fields automatically include the ASN Tag and Length bytes as part of the field itself.

Example: An integer ASN.1 field messageID will be decoded as shown below to include the
ASN.1 tag (02) and length (01).

FieldStm << FID_ASN_MESSAGE_ID;

4.5.14.2 Enumerations

9 This represents a huge savings for you in terms of complexity of analyzing a ASN.1 document
and writing an Unsniff plugin for that protocol.

52 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

Enumerationed field types are basic types in ASN.1. You can attach an enumerated list to all
ASN BER basic fields. If the actual packet frame contains a numeric or enumerated tag then the
enumerated list is used, otherwise a warning is issued and the enumerated list is ignored.

Example: Version is a numeric field with enumerated values of (0,1,2).

<FieldDef name="Version">
 <fieldtype>ASNBER</fieldtype>
 <styles>optional</styles>

 <EnumList>
 <Enum name="v1" value="0" />
 <Enum name="v2" value="1" />
 <Enum name="v3" value="2" />

 </EnumList>
</FieldDef>

OID Enumerations

This is a powerful feature of the Unsniff API. You can attach enumerated names to OID fields.
Since OIDs are also basic types in ASN.1 (UNIVERSAL 6); they use the same <ASNBER>
fieldtype in XML and CUSNFAsnField in C++. OID Enumerations are very useful in cases
where you want to display what each OID means as part of your protocol decode.

Example: Consider this snippet from the X.509 plugin. The AlgorithmOID determins the type of
cryptographic hashing and encyprtion used by the certificate.

- <FieldDef name="AlgorithmOID">
 <fieldtype>ASNBER</fieldtype>
 <variable>AlgorithmOID</variable>

- <OIDEnumList>
 <Enum oid=".1.2.840.113549.1.1.1" name="rsaEncryption"

longname="iso(1) member-body(2) us(840)
rsadsi(113549) pkcs(1) pkcs-1 (1) rsaEncrpytion (1)"
/>

 <Enum oid=".1.2.840.113549.1.1.2"
name="md2WithRSAEncryption" longname="iso(1)
member-body(2) us(840) rsadsi(113549) pkcs(1)
pkcs-1 (1) md2WithRSAEncryption (2)" />

 - - -
 </OIDEnumList>

 </FieldDef>

Unsniff Plugin Developer’s Guide | 53

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

4.5.14.3 SEQUENCE and SET fields

ASN.1 structures are defined using the SEQUENCE and SET data types. These in essence
define a record field

�� SEQUENCE specifies an order in which member fields must appear
�� SET member fields can appear in any order

Unsniff handles SEQUENCE types using CUSNFAsnSequence (ASNBERSequence in XML)
and SET types using CUSNFAsnSetField.(ASNBERSet in XML)

Example:
Consider this fragment from the LDAPv3 specification (this defines the Control field)

Control ::= SEQUENCE {
controlType LDAPOID,
criticality BOOLEAN DEFAULT FALSE,
controlValue OCTET STRING OPTIONAL }

Observe that all the three member fields are actually built in datatypes (LDAPOID is defined as
OBJECT IDENTIFIER). The only remaining issue is the DEFAULT and OPTIONAL modifiers.
Both these modifiers can be handled by the optional (FS_OPTIONAL) style.

C++

CUSNFAsnSequenceField * pControl = new CUSNFAsnSequenceField(
 “Control”);

 pControl->AddChild(FID_CTL_TYPE, new CUSNFAsnField(“controlType”. .
 pControl->AddChild(FID_CRIT, new CUSNFAsnField(“criticality”. .
 FS_OPTIONAL);
 pControl->AddChild(FID_VALUE, new CUSNFAsnField(“controlValue”,
 FS_OPTIONAL);

UserAddFieldDef(FID_CONTROL, pControl);

XML

<FieldDef name="ControlControlControlControl" >
 <fieldtype> ASNBERSequence </fieldtype> <fieldtype> ASNBERSequence </fieldtype> <fieldtype> ASNBERSequence </fieldtype> <fieldtype> ASNBERSequence </fieldtype>
 <FieldDefs>
 <FieldDef name=”controlTypecontrolTypecontrolTypecontrolType”>
 <fieldtype> ASNBERASNBERASNBERASNBER </fieldtype>
 <helptext> OID of LDAP control type </helptext>
 </FieldDef>

 <FieldDef name=”criticalitycriticalitycriticalitycriticality”>
 <fieldtype> ASNBERASNBERASNBERASNBER </fieldtype>
 <styles> optionaloptionaloptionaloptional </optional>
 </FieldDef>

 <FieldDef name=”controlValuecontrolValuecontrolValuecontrolValue”>
 <fieldtype> ASNBERASNBERASNBERASNBER </fieldtype>
 <styles> optionaloptionaloptionaloptional </optional>
 </FieldDef>

</FieldDef>

54 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

4.5.14.4 SEQUENCE OF and SET OF
The ASN type SEQUENCE OF defines a autorepeat structure. The outer ASN Length field
implicitly defines the number of times the field repeats. Unsniff handles this automatically – you
do not need to keep track of the number of repeats. Like always; you can define your fields
without worrying about overshooting the frame or encountering junk types. Unsniff does all the
error checking for you.

You handle the SEQUENCE OF and SET OF fields using the fill (FS_FILL) styles. Attach this
style to the field that will repeat. Unsniff will automatically repeat it the correct number of times.

Example:
Again let us consider the following fragment from the LDAP protocol. The Controls field is defined
as a SEQUENCE of Control. Yes, that is the same Control field that we defined in the previous
section.

Controls ::= SEQUENCE OF Control

In the example below: we assume that the field Control has already been defined. Notice the use
of the <ref> attribute in the XML. You can find more detail about <ref> attributes in Section 7.

C++

CUSNFAsnSequenceField * pControls = new CUSNFAsnSequenceFieldCUSNFAsnSequenceFieldCUSNFAsnSequenceFieldCUSNFAsnSequenceField(
 “Controls”);

 pControl->FillChildFillChildFillChildFillChild(FID_CTL, pControl);

XML

<FieldDef name="ControlsControlsControlsControls" >
 <fieldtype> ASNBERSequence </fieldtype> <fieldtype> ASNBERSequence </fieldtype> <fieldtype> ASNBERSequence </fieldtype> <fieldtype> ASNBERSequence </fieldtype>
 <FieldDefs>
 <FieldDef ref=”ControlControlControlControl”>
 <styles> fill</optional> <styles> fill</optional> <styles> fill</optional> <styles> fill</optional>
 </FieldDef>
</FieldDef>

Unsniff Plugin Developer’s Guide | 55

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

4.5.14.5 Tagging

There are two types of tagging from the point of view of the plugin developer.

1. Implicit Tags
2. Explicit Tags

Implicit and Explicit Tagging
The tagging type in effect is usually mentioned at the top of the ASN.1 specification. For example
the LDAPv3 specification uses implicit tags.

Lightweight-Directory-Access-Protocol-V3 DEFINITIONS
IMPLICIT TAGS ::=

You may also find the tagging type specified inline. For example:
InitialContextToken ::= IMPLICIT SEQUENCE {

..

}

Example:
Consider the following fragment from the LDAP protocol. This sequence uses implicit tagging,
because the entire LDAP protocol uses it.

MatchingRuleAssertion ::= SEQUENCE {
matchingRule [1] MatchingRuleId OPTIONAL,
type [2] AttributeDescription OPTIONAL,
matchValue [3] AssertionValue,
dnAttributes [4] BOOLEAN DEFAULT FALSE }

C++

CUSNFAsnSequenceField * pMatching = new CUSNFAsnSequenceField(
 “MatchingRuleAssertion”);

 pControl->AddImplicitTaggedChildAddImplicitTaggedChildAddImplicitTaggedChildAddImplicitTaggedChild(1111,
 new CUSNFAsnField(“matchingRule”. .

 pControl->AddImplicitTaggedChildAddImplicitTaggedChildAddImplicitTaggedChildAddImplicitTaggedChild(2222,
 new CUSNFAsnField(“type”. .

 pControl->AddImplicitTaggedChildAddImplicitTaggedChildAddImplicitTaggedChildAddImplicitTaggedChild(3333,
 new CUSNFAsnField(“matchValue”. .

 pControl->AddImplicitTaggedChildAddImplicitTaggedChildAddImplicitTaggedChildAddImplicitTaggedChild(4444,
 new CUSNFAsnField(“dnAttributes”. .

UserAddFieldDef(FID_MATCHING_RULE_ASSERTION, pMatching);

56 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

XML

<FieldDef name="matchingRuleAssertionmatchingRuleAssertionmatchingRuleAssertionmatchingRuleAssertion" >
 <fieldtype> ASNBERSequence </fi <fieldtype> ASNBERSequence </fi <fieldtype> ASNBERSequence </fi <fieldtype> ASNBERSequence </fieldtype> eldtype> eldtype> eldtype>
 <FieldDefs>

 <FieldDef name=”matchingRulematchingRulematchingRulematchingRule”>
 <fieldtype> ASNBER </fieldtype>
 <asntagimplicit> 1</asntagimplicit> <asntagimplicit> 1</asntagimplicit> <asntagimplicit> 1</asntagimplicit> <asntagimplicit> 1</asntagimplicit>
 <helptext> The matching rule</helptext>
 </FieldDef>

 <FieldDef name=”typetypetypetype”>
 <fieldtype> ASNBER </fieldtype>
 <asntagimplicit> 2</asntagimplicit> <asntagimplicit> 2</asntagimplicit> <asntagimplicit> 2</asntagimplicit> <asntagimplicit> 2</asntagimplicit>
 <helptext> The matching rule</helptext>
 </FieldDef>

 <FieldDef name=”matchValuematchValuematchValuematchValue”>
 <fieldtype> ASNBER </fieldtype>
 <asntagimplicit> 3</asntagimplicit> <asntagimplicit> 3</asntagimplicit> <asntagimplicit> 3</asntagimplicit> <asntagimplicit> 3</asntagimplicit>
 <helptext> The matching rule</helptext>
 </FieldDef>

 <FieldDef name=”dnAttributesdnAttributesdnAttributesdnAttributes”>
 <fieldtype> ASNBER </fieldtype>
 <asntagimplicit> 4</asntagimplicit> <asntagimplicit> 4</asntagimplicit> <asntagimplicit> 4</asntagimplicit> <asntagimplicit> 4</asntagimplicit>
 <helptext> The matching rule</helptext>
 </FieldDef>

</FieldDef>

Note: Explicit Tagging can be handled in exactly the same way as shown above:

�� Use AddExplicitTaggedChild(<Tag Value> , pField) for C++ field definitions
�� Use <asntagexplicit> value </asntagexplicit> for XML field definitions

Unsniff Plugin Developer’s Guide | 57

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

4.5.14.6 User Defined Types

These are user-defined types. Every application can define a set of custom data types that are
used within that application. These are assigned a tag such as APPLICATION 10, UNIVERSAL
20 etc.

The purpose of the APPLICATION class is mentioned in the ASN.1 standard [X.409] as shown in
the box below.

The standard [X.409] indicated that the APPLICATION class would be used to define a data type that finds
wide, scattered use within a particular application and that must be distinguishable (by means of
its[abstract syntax]) from all other data types used in the application".

The bottom line idea was to use this class to tag types that would be referenced several times in a specific
application. As the tag of class APPLICATION.

Consider the following example from LDAP again for the AddRequest message type.

AddRequest ::= [APPLICATION 8] SEQUENCE {
entry LDAPDN,
attributes AttributeList }

Note that the SEQUENCE has a user-defined tag of APPLICATION 8. Using the Unsniff API, we
must be able to connect the AddRequest data type to the tag APPLICATION 8.

The Unsniff API supports custom data types in the APPLICATION and UNIVERSAL class via the
AddCustomTag() method in C++ or the <asntag> XML tag.

C++

CUSNFAsnSequenceField * pAddRequest = new CUSNFAsnSequenceFieldCUSNFAsnSequenceFieldCUSNFAsnSequenceFieldCUSNFAsnSequenceField(
 “AddRequest”);

 pAddRequestpAddRequestpAddRequestpAddRequest---->SetCustomTag(ASN1_APPLICATION | 8);>SetCustomTag(ASN1_APPLICATION | 8);>SetCustomTag(ASN1_APPLICATION | 8);>SetCustomTag(ASN1_APPLICATION | 8);

XML

<FieldDef name="AddRequestAddRequestAddRequestAddRequest" >
 <fieldtype> ASNBERSequence </fieldtype>
 <asntag> APPLICATION 8 </asntag> <asntag> APPLICATION 8 </asntag> <asntag> APPLICATION 8 </asntag> <asntag> APPLICATION 8 </asntag>
 <FieldDefs>
 <FieldDef ref=”entry”>

 </FieldDef>
</FieldDef>

Usage Notes:
Note that in the XML <asntag> element, you can type in the string “APPLICATION 8”. You can
also use “UNIVERSAL xx” format.

58 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

4.5.14.7 CHOICE fields

ASN Choice fields are very common. A choice field is used to select a particular field from a set of
candidates. The ASN tag of the field identifies the field present.

Consider the following fragment:

substrings SEQUENCE OF CHOICE {
initial [0] LDAPString,
any [1] LDAPString,
final [2] LDAPString } }

Recall the all tags are IMPLICIT according to the LDAP ASN.1 specification. In the above
fragment, substrings is a SEQUENCE of CHOICE field. We have already seen how to support
the SEQUENCE OF modifier using FillChild and fill style.

C++
CUSNFAsnChoiceFieldCUSNFAsnChoiceFieldCUSNFAsnChoiceFieldCUSNFAsnChoiceField * pChoices = new CUSNFAsnChoiceFieldCUSNFAsnChoiceFieldCUSNFAsnChoiceFieldCUSNFAsnChoiceField(
 “choices”);

 pControl-> AddChoiceImplicit AddChoiceImplicit AddChoiceImplicit AddChoiceImplicit (0000,
 new CUSNFAsnField(“initial”. .

 pControl-> AddChoiceImplicit AddChoiceImplicit AddChoiceImplicit AddChoiceImplicit (1111,
 new CUSNFAsnField(“any”. .

 pControl-> AddChoiceImplicit AddChoiceImplicit AddChoiceImplicit AddChoiceImplicit (2222,
 new CUSNFAsnField(“final”. .

CUSNFASNSequenceField * pSubstrings = new CUSNFAsnSequenceField(
 “substrings”);

pSubstrings->FillChild(FID_CHOICES, pChoices);
UserAddFieldDef(FID_SUBSTRINGS, pSubstrings);

XML

<FieldDef name="substringssubstringssubstringssubstrings" >
 <fieldtype> ASNBERSequenceASNBERSequenceASNBERSequenceASNBERSequence </fieldtype>
 <styles> fillfillfillfill </styles>
 <FieldDefs>

 <FieldDef name=”choiceschoiceschoiceschoices”>
 <fieldtype> ASNBERChoice </fieldtype> <fieldtype> ASNBERChoice </fieldtype> <fieldtype> ASNBERChoice </fieldtype> <fieldtype> ASNBERChoice </fieldtype>
 <FieldDefs>
 <FieldDef name=”initialinitialinitialinitial”>
 <fieldtype> ASNBER </fieldtype>
 <asntagimplicit> 0 <asntagimplicit> 0 <asntagimplicit> 0 <asntagimplicit> 0 </asntagimplicit></asntagimplicit></asntagimplicit></asntagimplicit>
 </FieldDef>

 <FieldDef name=”anyanyanyany”>
 <fieldtype> ASNBER </fieldtype>
 <asntagimplicit> 1 </asntagimplicit> <asntagimplicit> 1 </asntagimplicit> <asntagimplicit> 1 </asntagimplicit> <asntagimplicit> 1 </asntagimplicit>
 </FieldDef>

 <FieldDef name=”finalfinalfinalfinal”>
 <fieldtype> ASNBER </fieldtype>
 <asntagimplicit> 2 </asntagimplicit> <asntagimplicit> 2 </asntagimplicit> <asntagimplicit> 2 </asntagimplicit> <asntagimplicit> 2 </asntagimplicit>
 </FieldDef>
 </FieldDefs>
 </FieldDef>
. . .

Unsniff Plugin Developer’s Guide | 59

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

4.5.14.8 Self Referential ASN fields

Self referential fields are those which have themselves as one of their children. This one is quite
nasty, but it occurs in many protocols. The Unsniff API goes to great lengths to make it almost
painless for you to support this type of field.

Take this example (for simplicity let us leave ignore the SET OF modifier)

Filter ::= CHOICE {
and [0] SET OF Filter,
or [1] SET OF Filter,
not [2] Filter,
. . .

You can see that the definition of Filter itself needs Filter to be defined. This is the catch –22 ness
of the situation. The C++ version requires the use of a Weak Reference field.

C++
CUSCUSCUSCUSNFAsnChoiceFieldNFAsnChoiceFieldNFAsnChoiceFieldNFAsnChoiceField * pFilter = new CUSNFAsnChoiceFieldCUSNFAsnChoiceFieldCUSNFAsnChoiceFieldCUSNFAsnChoiceField(
 “Filter”);

 pControl-> AddChoiceImplicit AddChoiceImplicit AddChoiceImplicit AddChoiceImplicit (0000,
 new CUSNFAsnWeakRefField(“and”, pFilter));

 pControl-> AddChoiceImplicit AddChoiceImplicit AddChoiceImplicit AddChoiceImplicit (1111,
 new CUSNFAsnWeakRefField(“or”, pFilter));

 pControl-> AddChoiceImplicit AddChoiceImplicit AddChoiceImplicit AddChoiceImplicit (2222,
 new CUSNFAsnWeakRefField(“not”, pFilter));

UserAddFieldDef(FID_FILTER, pFilter);

XML

<FieldDef name="FilterFilterFilterFilter" >
 <fieldtype> ASNBERChoiceASNBERChoiceASNBERChoiceASNBERChoice </fieldtype>
 <FieldDefs>

 <FieldDef name=”andandandand” ref=”FilterFilterFilterFilter”>
 <asntagimplicit> 0 </asntagimplicit><asntagimplicit> 0 </asntagimplicit><asntagimplicit> 0 </asntagimplicit><asntagimplicit> 0 </asntagimplicit>
 </FieldDef>

 <FieldDef name=”orororor” ref=”FilterFilterFilterFilter”>
 <asntagi<asntagi<asntagi<asntagimplicit> 1 </asntagimplicit>mplicit> 1 </asntagimplicit>mplicit> 1 </asntagimplicit>mplicit> 1 </asntagimplicit>
 </FieldDef>

 <FieldDef name=”notnotnotnot” ref=”FilterFilterFilterFilter”>
 <asntagimplicit> 2 </asntagimplicit><asntagimplicit> 2 </asntagimplicit><asntagimplicit> 2 </asntagimplicit><asntagimplicit> 2 </asntagimplicit>
 </FieldDef>

. . .

Note that the XML version requires no work at all !. The <ref> attribute can handle circular
references as well.

60 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

4.5.14.9 BIT STRING fields

A BIT STRING field is a basic field type in ASN.1. It is however different from the other fields
because it assigns values to individual subfields. The ASNBERBit XML tag and
CUSNFASNBitField C++ class supports the bit fields.

Example: Consider the KeyUsage bit field from the X.509 specification

- <FieldDef name="KeyUsage">
 <fieldtype>ASNBERBit</fieldtype>
 <styles>sublayout</styles>
- <BitList>

 <bit name="digitalSignature" />
 <bit name="nonRepudiation" />
 <bit name="keyEncipherment" />
 <bit name="dataEncipherment" />
 <bit name="keyAgreement" />
 <bit name="keyCertSign" />
 <bit name="cRLSign" />
 <bit name="encipherOnly" />
 <bit name="decipherOnly" />

 </BitList>

Unsniff Plugin Developer’s Guide | 61

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

4.5.15 Padding fields

A large number of protocols utilize padding to align fields to a pre-defined boundary. The Unsniff
API provides the pad field (CUSNFPadField) to address almost all padding situations.

To use a padding field :

• Define a pad field with the appropriate padding behavior
• Push the pad field on to the field stack along with the other fields
• Unsniff will automatically add the padding field of the correct size
• If no padding is required for a given packet. The pad field will become a no-op,

no pad will be added

Padding behavior
The pad field supports the following behaviors. You must select the most appropriate behavior for
your padding. This information can be obtained from the relevant standards document(s) for your
protocol.
Behavior Parameters Description
PAD_CURRENT B = Boundary

Size in bits
Pad to the current ‘B’ bit boundary.

Example: PAD_CURRENT 32 bit
(pad to the current 32 bit boundary)

11 22 00 00 00 00 11 22
 |-----|
 ^
 |
 +--- Pad field (size 2 bytes)

PAD_NEXT B = Boundary
Size in bits

Pad to the next ‘B’ bit boundary.

Example: PAD_NEXT 32 bit
(pad to the next 32 bit boundary)

11 22 00 00 00 00 11 22
 |-------------------|
 ^
 |
 +--- Pad field
 (size 6 bytes)

PAD_FILL P = Pad Byte Pad is indefinite length. Pad will end when the first
non-pad byte is encountered or end of frame.

Example: PAD_FILL 0
(pad with zeros)

11 22 00 00 00 00 11 22
 |-------------|
 ^
 |
 +--- Pad field
 (size 4 bytes)

62 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

Example

RTCP protocol SDES10 record are used to convey source description information. The end of
each record is indicated by a null item type octet. No length octet follows the null item type octet,
but additional null octets MUST be included if needed to pad until the next 32-bit boundary.

As shown in the figure the PAD field follows CNAME and END and is 6 bytes long.

To support the above pattern

C++

// in ProvideFieldDefs()
// define the pad field

 UserAddFieldDef (FID_PADFID_PADFID_PADFID_PAD,

 new CUSNFPadField(CUSNFPadField:PAD_NEXTnew CUSNFPadField(CUSNFPadField:PAD_NEXTnew CUSNFPadField(CUSNFPadField:PAD_NEXTnew CUSNFPadField(CUSNFPadField:PAD_NEXT
 32)); 32)); 32)); 32));

// later in BreakoutFields()
// push the pad after cname and end

FieldStm << FID_CNAME << FID_END << FID_PADFID_PADFID_PADFID_PAD;

XML
In XML the pad field is defined as part of a record just like any other field. Note the
use of pad specific elements (padtype, padalign,padbyte>
 <FieldDef name="SDES Chunk" >

 <FieldDef name="Pad" >
 <fieldtype>pad</fieldtype>
 <padalign>32</padalign> <padalign>32</padalign> <padalign>32</padalign> <padalign>32</padalign>
 <padtype> padnext </padtype> <padtype> padnext </padtype> <padtype> padnext </padtype> <padtype> padnext </padtype>
 </FieldDef>

��Tip
The pad field helps you write error free code. It has a lot of built in error
checks for buffer overruns. The PAD next and PAD_CURRENT styles can
be confusing, you may have to observe some actual traffic to ensure you
have the correct type of padding behavior

10 See RFC 3550 – SDES RTCP Packet

Unsniff Plugin Developer’s Guide | 63

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

4.5.16 Using Delay Load

Delay Load is a powerful mechanism designed to improve performance and memory usage. The
basic idea is to defer loading of some fields until we actually need them.

��Info
Use Delay Loading sparingly. While delay load may improve performance it may
hamper readability of your protocol plugin.
Delay Load is not available for pure XML plugins.

To use delay load:

�� Group your fields into DelayLoadGroups
�� Assign a name to each DelayLoadGroup
�� When you need to use a field from a DelayLoadGroup; make a call to

UserLoadDelayLoadGroup(“groupname”) – following this call all the fields in that
group will become available to you.

�� Proceed with pushing fields from the delay load group normally

As an example consider the 802.11 protocol. We may want to define a delay load group for
management frames. This will speed up the field definition process because the field definitions
for management frames will not be loaded until there is actually a management frame.

C++
Any field definitions between BeginDelayLoad and EndDelayLoad are automatically
made part of the delay load group
//
// Mgmt Frames (following fields are used by management frames only)
//
UserBeginDelayLoadGroup("Management Frames");UserBeginDelayLoadGroup("Management Frames");UserBeginDelayLoadGroup("Management Frames");UserBeginDelayLoadGroup("Management Frames");
UserAddFieldDef(FID_MG_AUTH_ALGO, new CUSNFNumericField(
 "Auth Algorithm Number", . . .);
UserAddFieldDef(FID_MG_AUTH_TRANS,new CUSNFNumericField(
 "Auth Transaction Sequence", . . .);
UserAddFieldDef(FID_MG_BEACON_INTERVAL,new CUSNFNumericField(
 "Beacon Interval", . . .);

// define all other fields used by management frames here

UserEndDelayLoadGroup();UserEndDelayLoadGroup();UserEndDelayLoadGroup();UserEndDelayLoadGroup();

XML

<FieldDefs DelayLoadGroupDelayLoadGroupDelayLoadGroupDelayLoadGroup="Management FramesManagement FramesManagement FramesManagement Frames" >
 <FieldDef name=”Auth Algorithm Number”>
 . . .
 </FieldDef>
 <FieldDef name=”Auth Transaction Sequence”>
 . . .
 </FieldDef>
 <FieldDef name=”Beacon Interval”>
 . . .
 </FieldDef>
</FieldDefs>

64 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

Usage Notes
To use fields from a delay load group – you must explicitly load the group. There are two ways of
loading a delay load group:

Using the stream operator STM_USE_DELAY_LOAD_GROUP

FieldStm << STM_USE_DELAY_LOAD_GROUP(“Management Frames”)STM_USE_DELAY_LOAD_GROUP(“Management Frames”)STM_USE_DELAY_LOAD_GROUP(“Management Frames”)STM_USE_DELAY_LOAD_GROUP(“Management Frames”)
 << FID_MG_AUTH_ALGO
 << FID_MG_AUTH_TRANS
 << FID_MG_AUTH_BEACON_INTERVAL;

Using UserLoadDelayLoadGroup

 UserLoadDelayLoadGroup(“Management Frames”);

FieldStm << FID_MG_AUTH_ALGO
 << FID_MG_AUTH_TRANS
 << FID_MG_AUTH_BEACON_INTERVAL;

4.5.17 Using Resolvers

A key component of any network analyzer is name resolution. The Unsniff plugin API provides in
depth support for name resolution using plugin name resolvers. At the most basic level, a name
resolver is something that converts an object (such as addresses, OIDs, or numbers) into human
friendly strings.

Name Resolver Plugin

Name resolution is a highly customized task. There can be no one-size-fits-all solution to all types
of objects. Therefore Unsniff defines something called a Name Resolution Target. This target is
something that requires a certain type of name resolution. Each name resolution target has a
unique GUID.

Example targets:

�� SNMP OID {21DDAF85-FCA6-4e42-B593-D221A3633A6E}

�� IP ADDRESS {92B15480-5123-4031-97B4-F8A24C3EF5C6}

�� IP6 {AA7F6546-4123-4deb-A9A8-9029E7873DA7}

�� MAC (OUI) {3421E7F6-388F-44d9-849C-DD8E65BFAB10}

�� OSPF AREA NAME {A0908595-085E-4cc6-8D19-F6363BB4AB73}

You can also define your own name resolution target (perhaps you want to convert telephone
numbers to names; interface numbers to shelf/slot/port, BGP AS numbers to something readable,
etc).

To define a custom name resolver, you have to write a different type of plugin. This is called a
name resolver plugin. Please refer to the Chapter 7 : Advanced Plugins for details.

Unsniff Plugin Developer’s Guide | 65

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

In this section we will discuss how to use name resolution in your fields.

Consider an example: We want to resolve an instance of a SNMP OID to a human readable
name.

Note that we just use the “Target GUID”. We do not care how Unsniff translates the OID to a
name. Behind the scenes, Unsniff figures out if there is plugin who claims to be capable of
handling the given “Target ID”. If there is such a plugin, Unsniff will load it and ask it to perform
the task.

C++

OID is defined as an ASN field

UserAddFieldDef(FID_OID,new CUSNFAsnField(_T("OID"),FS_LABEL));

// URSV_SNMPOID is the target OID
// defined in UsnfProtocols.c to be {21DDAF85-FCA6-4e42-B593-D221A3633A6E}

UserAttachResolver(FID_OID,URSV_SNMPOID);UserAttachResolver(FID_OID,URSV_SNMPOID);UserAttachResolver(FID_OID,URSV_SNMPOID);UserAttachResolver(FID_OID,URSV_SNMPOID);

XML

<FieldDef name=”OID”>
 <fieldtype> ASNBER </fieldtype>

 <resolveid> <resolveid> <resolveid> <resolveid>
 {21DDAF85 {21DDAF85 {21DDAF85 {21DDAF85----FCA6FCA6FCA6FCA6----4e424e424e424e42----B593B593B593B593----D221A3633A6E} D221A3633A6E} D221A3633A6E} D221A3633A6E}
 </resolveid> </resolveid> </resolveid> </resolveid>

 <styles> label </styles>
</FieldDefs>

Usage Notes
To use name resolution, simply push the field onto the field stack normally. Name resolution
happens automatically.

FieldStm << FID_OID

66 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

4.5.18 User Defined Fields

The built in field types you have seen so far can handle the overwhelming majority of protocols.
Even really weird fields can be handled with the binary or string field, albeit at a basic level. The
Unsniff API however is all about extensibility, you can extend ANY of the built in base classes to
add your own functionality. You can then register it with the API and use it from an XML plugin.

Select a base class
First of all you have to select a base class that is closest in behavior to your requirements.
If you do not know of any class that is close to your desired behavior follow these suggestions:

1. If your field has a fixed length, derive from CUSNFBinaryField. Override the
GetDisplayValString() function to craft your own representation of the field

2. If your fields length is dynamic, derive from CUSNFBinaryField directly. Override

the SetValueAutomatic() as well as the GetDisplayValString() function

Implement your class

Create a new class (example CMyCustomField) with your desired constructors and methods. A
minimum skeleton of a class is shown below. Note that the copy constructor and the MkCopy
method are mandatory. In the example we have derived from CUSNFBinaryField.

// CMyCustomField
// My custom field for use in this protocol
//
class CMyCustomFieldCMyCustomFieldCMyCustomFieldCMyCustomField :
 public CUSNFBinaryFieldCUSNFBinaryFieldCUSNFBinaryFieldCUSNFBinaryField
{
public:

 // Full constructor w/o value
 CMyCustomField (LPCTSTRCMyCustomField (LPCTSTRCMyCustomField (LPCTSTRCMyCustomField (LPCTSTR pszName, pszName, pszName, pszName,
 LPCTSTR LPCTSTR LPCTSTR LPCTSTR pszShortName, pszShortName, pszShortName, pszShortName,
 DWORD DWORD DWORD DWORD dwStyle); dwStyle); dwStyle); dwStyle);

 // .. Other constructors if needed

 // Copy constructor (this is a MUST)
 CMyCustomField (const CMyCustomField & CopyFrom);

public:
 virtual LPCTSTRvirtual LPCTSTRvirtual LPCTSTRvirtual LPCTSTR GetDisplayValString();GetDisplayValString();GetDisplayValString();GetDisplayValString();
 virtual CUSNFField * MkCopy(CUSNFField * pOrig);

};

Unsniff Plugin Developer’s Guide | 67

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

Use your class

For C++ : Your newly defined class is a first class member. It is just as good as the built-in field
types supported by the Unsniff API. You can use your class just like the built in fields

For XML: To use your custom field from XML you have to do a little bit more.

1. You have to register your field type with the Unsniff API using the
AddCustomFieldType(Typename, Instance) method.

2. From XML you can refer to custom field types by appending a % symbol in from of the

typename

C++
.

// Define your custom field

UserAddFieldDef(FID_MYGREAT_FIELD,
 new CMyCustomField("My Scan Data ",
 ”MyScan”,
 FS_LABEL));

// Use your custom field just like any other field

FieldStm << FID_TYPE << FID_MYGREAT_FIELD << FID_MYGREAT_FIELD << FID_MYGREAT_FIELD << FID_MYGREAT_FIELD << FID_LENGTH;;;;

XML

// In your C++ module

// Define your custom field
UserAddFieldDef(FID_MYGREAT_FIELD,
 new CMyCustomField("My Scan Data ",
 ”MyScan”,
 FS_LABEL));

// Register your type
UserAddCustomFieldDef(“MyCustomField, new
 CMyCustomField(NULL,NULL,FS_PLAIN));

// In your XML file (note the ‘ % ’ symbol)(note the ‘ % ’ symbol)(note the ‘ % ’ symbol)(note the ‘ % ’ symbol)

<FieldDef name=”My Scan Data” shortname =”MyScan” >

 <fieldtype> %MyCustomField </fieldtype> <fieldtype> %MyCustomField </fieldtype> <fieldtype> %MyCustomField </fieldtype> <fieldtype> %MyCustomField </fieldtype>
 <styles> label </styles>
 ..

</FieldDefs>

68 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

5 Plugins in C++

This section contains detailed information about how to write protocol plugins in C++. This section
is divided into:

�� Using the Unsniff API Visual Studio wizards

�� Installing plugins

�� “Hello World” Step-by-Step

�� Handling stream based protocols

�� Defining fields

�� Breakout a packet into its constituent fields

�� Accounting

�� Configuration support

�� Tips and Tricks

Checklist

Before you jump in and start writing a protocol plugin, here is a quick checklist of things you will
need.

��Install the last version of the Unsniff Plugin Developers API

��Microsoft Visual Studio 6.0 or Microsoft Visual Studio .NET

��Your protocol specification (RFC or other specifications document)

��Some sample packets containing the protocol to test your plugin

��If you are planning to use XML to define fields, have an XML Editor handy. We

recommend the free Microsoft XML Notepad

Unsniff Plugin Developer’s Guide | 69

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

5.1 The Unsniff Plugin API Visual Studio Wizards

As mentioned in Chapter 2, all Unsniff plugins are COM components. These are written using the
Active Template Library (ATL). These COM components are In-process servers, which means
that they will be packaged as a DLL. A single DLL can contain any number of plugins.

A typical arrangement for the plugin developer is:

1. Create a single DLL for your entire family of protocols
2. Create separate plugins for each protocol inside this DLL

5.1.1 Wizards Introduction

The most frustrating thing about writing COM objects using ATL is just getting the framework
right. Unsniff makes it really easy to get started with the help of two wizards.

1. Plugin Project AppWizard
Used to create the DLL project, which will house all your plugins

2. Plugin ATL Object Wizard
Used to create a single protocol plugin

These wizards are automatically installed into your Microsoft Visual Studio environment when you
install the plugin API. These wizards will be completely removed from the system when you
uninstall the Unsniff Plugin API.

70 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

5.1.2 Unsniff Project AppWizard

Purpose: This wizard will create a Visual Studio project for you. This project will build a DLL file .

 All your plugins will be created within this DLL

Step by Step

1. Open Microsoft Visual Studio

2. Click on “File” -> “New”

h
3. Switch to the Projects Tab. You will now be presented with the screen below

4. Select the “Unsniff API AppWizard” project type from the list (as shown below)

5. Type a name for your DLL. We suggest that you use a DLL name that represents the

protocols you are going to house in it. (For Example: AcmeProtocols.dll)

Unsniff Plugin Developer’s Guide | 71

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

6. Click OK. You will be presented with a confirmation screen (see below)

7. Click OK to confirm

(End of Steps)

You now have a DLL project ready for you. Test your setup by building an empty DLL project.

�� Press F7 to build the project

�� The project should build without errors (as shown below)

�� You can use a Debug build during the testing phase. We recommend that you ship your

DLL using the Release configuration only

72 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

5.1.3 Unsniff Plugin ATL COM Object Wizard

Purpose: To create an Unsniff Plugin object. This object will be responsible for handling your
protocol.

Step by Step

1. Open an existing Unsniff Plugin DLL Project

2. Click on “Insert” -> “New ATL Object”

3. From the “Category” list; select “Miscellaneous” . You will be presented with the following

screen.

4. Select the “Unsniff Plug In” item and press the “Next” button. This will bring up the
following window

Unsniff Plugin Developer’s Guide | 73

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

Specify the Short Name of the protocol you wish to handle. All other fields are filled in
automatically. This table summarizes other entries that you can change.

Item Description
Short Name You must specify this.

We recommend that you choose a name that is resembles
the protocol name. In the example above we chose the short
name to be BOOTP because we intend to write a plugin for
the BOOTP/DHCP protocol.

These Fields are automatically filled in
Class The name of the C++ class
.H file The header file for the C++ plugin class
.CPP file The implementation (Cpp) file for the C++ plugin class
Interface The name of the COM interface you wish to implement. If

you are familiar with COM you can play around by adding
your own interfaces here

Prog ID The COM Prog ID under which this object will be registered.
You can change this to something like AcmeSoftware.Prot
to reflect your companies name.

5. After you are done with Step 4; click on the “Unsniff Plugin Object Wizard” tab. You will

be presented with this screen.

This screen contains several important fields you are expected to fill up. See the table
below for help.

Item Description
Protocol Name (Short) A short name for your protocol.

We recommend that you restrict this name to less than 8
characters

Protocol Name The full protocol name
Protocol ID Each protocol in Unsniff is associated with a GUID. Enter a

symbolic name for the GUID associated with this protocol. In
the above example UPID_BOOTP is a “well known” GUID for

74 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

the BOOTP protocol
Supports Accounting Does this plugin plan to account for sub protocols or

messages. For example : a HTTP plugin may want to account
for GET/POST/RESPONSE/ERROR messages

Access Point Client Can this plugin be accessed via access points?
For example : TCP Ports, UDP Ports, Ethernet Ethertypes, etc

Access Point Host Will this plugin act as an Access Point Host? In other words,
are there other protocols riding on top of this one?

Has Configurable
Preferences

If this plugin has some custom configuration parameters that
can be set/viewed via the “Customize Plugins” dialog in
Unsniff.

Stream Based Protocol Is this protocol stream based?
Check this if your protocol runs on top of TCP and if it requires
reassembly. You must check this if you plan to present your
protocol as PDUs in Unsniff.

Insert Helpful Comments The wizard strews helpful comments throughout the generated
code. The generated code actually creates a dummy plugin
that decodes two dummy fields. You can use this as a tool for
getting off to a quick start.

8. Click OK to confirm

(End of Steps)

Congratulations!
Your ATL COM plugin is now ready for use. The class view must now have the generated class in
it. You are now ready to flesh out this class with details about your protocol.

The above picture shows a newly insert plugin object. Observe all the methods. We will get to
know some of them in more detail in the next chapter.

Unsniff Plugin Developer’s Guide | 75

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

5.2 Installing Plugins

Plugins are really easy to install. All you have to do is to register your DLL. Unsniff has a
discovery mechanism11 which it employs to auto install plugins.

You can install your plugin using two methods.

5.2.1 Installation
Using Unsniff

This is the easiest way to install/uninstall a plugin.

1. Open Unsniff

2. From the main menu bar select “Plugins” -> “Install”

3. Select the DLL you wish to install

Use Regsvr32

Regsvr32 is a Windows command line tool, which is used to register/unregister COM
components.

1. Type regsvr32 <MyDllName.dll>

2. To Unregister : Type regsvr32 /u <MyDllName.dll>

Verify installation

To Check if your plugin has been successfully installed

1. Open Unsniff

2. From the main menu bar select “Plugins” -> “Manage Protocols”. This will open the

Unsniff Protocol Plugin Manager

3. Locate the protocol, then click the ‘+’ sign to show all registered plugins for that protocol.
You should see your plugin here. A correctly installed entry should appear as shown
below.

4. Make sure that the ‘Ok’ icon is displayed. You can also click on the “Details” link to
access further detail about the plugin

11 In case you are curious about the discovery process; Unsniff uses COM Categories to locate all plugins.

76 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

5.2.2 Activation
If your plugin is the only one registered for your protocol. There is no need for activation.
However, there are cases when you may have multiple plugins for a given protocol.

Some scenarios are:

�� You have written two or more versions of your plugin with different capabilities

�� You have a test version of a plugin

�� You have written a plugin for a protocol which is already supported by some other plugin

In those cases, you will need to select one of the many plugins for activation.

1. Open Unsniff

2. From the main menu bar select “Plugins” -> “Manage Protocols”. This will open the

Unsniff Protocol Plugin Manager

3. Locate the protocol, then click the ‘+’ sign to show all registered plugins for that protocol.
You should see your plugin here.

4. Select the plugin you want to be the “Active Plugin”. Then click OK

5.2.3 Access Points
One more thing you might want to check is whether your plugin has been wired up correctly to the
Access Point framework in Unsniff. You can customize access points for your plugin using the
Access Point Manager.

1. Open Unsniff

2. From the main menu bar select “Plugins” -> “Access Points”. This will open the Unsniff

Access Points Manager

3. Locate the host protocol(s). If your plugin runs atop UDP as well as TCP, then your host
protocols are UDP and TCP

4. Check if your protocol has been wired up to the right

access point value. In the example shown on the right,
we check if BOOTP has been correctly wired up to UDP
Port 68

5. You can customize the access points by adding more if

you wish. For example: Observe that DHCPv6 is wired
up to two UDP Ports 546 and 547

6. Click OK after verifying that everything is cool

(End of Task)

Unsniff Plugin Developer’s Guide | 77

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

5.2.4 Deployment

You have a lot of freedom to decide how to deploy a plugin DLL. As long as the plugin is
registered – it really does not matter where it is stored. You are free to install your plugin as you
wish.

Some guidelines for deployment:

�� Do not install your plugin DLL in System folders (C:\Windows\System32 etc)

�� Do not install on a network share for performance reasons

�� Try to install all your plugin DLLs in a single folder

�� Try to name the folder based on your company or organization name

�� While uninstalling ensure that you unregister your plugin

5.2.5 Uninstall

You can remove plugins completely from the system if you wish.

Some guidelines for uninstall:

�� Use “Plugins” -> “Uninstall” from the main menu. Select the DLL containing the plugin

and press OK

�� You can then remove the plugin from the system altogether if you wish.

78 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

5.3 Hello World

This section is a step-by-step guide to writing a very simple plugin. You will get a chance to use
the wizards and write an actual packet decoder.

5.3.1 The HelloWorld protocol

HelloWorld is a fictitious protocol. It is a ridiculously simple protocol – but it is perfect for this
exercise.

The Protocol
This protocol defines only two fields MessageType and Checksum. Every message in this
protocol consists of a Message type followed by a Checksum.

Field Name Size Explanation
MessageType 8 bits

(1 octet)
This is a message type field. Valid
values for this field are:

0 – “Hello City”
1 – “Hello Country”
2 – “Hello World”
3 – “Hello Martians”
4-255 – “Hello Stranger”

Checksum 32 bits
(4 octets)

A checksum field

Working
This protocol is designed to run on UDP Port 10001

Test Script and Sample Capture
A test script is available in the Samples/Test folder. We will use this script to generate these
packets. Alternately there is a tcpdump format capture file in the Samples/Test folder. We can
import this file for testing our plugin.

Test script : hw.rb – a simple Ruby script to generate sample HelloWorld packets. To run this
script type , “hw <hostname or ipaddress>” eg(hw 192.168.1.1)

Sample Capture: helloworld.tcpd – a few sample packets. You can import these packets using
File->Import->From TCPDump menu.

Unsniff Plugin Developer’s Guide | 79

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

5.3.2 Instructions
The instructions are organized into (1) Basic Steps (2) Implementing Hello World (3) Testing

Basic Steps

1. Create a DLL project using the Unsniff Plugin AppWizard using instructions in Sec 5.1.1
Name this DLL project “HelloWorld”

2. Create a plugin COM object using the Unsniff ATL COM Object Wizard using instructions
in Sec 5.1.3. Use the following options.

a. Name the object “HelloWorld”

b. Enter the following details into the Wizard as shown in the screen below.

3. Try building the plugin by pressing F7. You will get this error:

4. As you know each protocol must be identified with a unique GUID (See Section 2.1). We
have given a name for it in the wizard “UPID_HELLO_WORLD” – but we have not
specified a GUID yet. Do that now using the following steps

80 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

a. Open GUIDGEN.exe located in the Visual Studio directory

b. Use GUIDGEN.exe

located in the Visual
Studio directory to
generate a GUID in
DEFINE_GUID format

c. Copy the generated

GUID using the Copy
button

d. Open the generated

CPP file HelloWorld.cpp

e. Paste the clipboard
contents to the top of
the file

f. Change the string

<<Name>> to
UPID_HELLO_WORLD

g. The newly added line should now look like this (in HelloWorld.cpp)

. .

// {6163A781-4781-4516-BD92-A8EE96E586E7}
DEFINE_GUID(UPID_HELLO_WORLDUPID_HELLO_WORLDUPID_HELLO_WORLDUPID_HELLO_WORLD,
0x6163a781, 0x4781, 0x4516, 0xbd, 0x92, 0xa8, 0xee, 0x96, 0xe5, 0x86,
0xe7);
. .

5. Now we have defined the GUID. Time to build again. Now you should be able to build
with no errors.

Implementing Hello World

6. Take some time to study the CHelloWorld class. Open up the HelloWorld.cpp file; you

can see that the class has the following methods.
Method Name Purpose
FinalConstruct For Internal Use Only
FinalRelease For Internal Use Only
InternalQueryCtrl For Internal Use Only

ProvideID

Provide Identification information
You can see that this section is already filled up from the information
you supplied in the Wizard. The information elements you are
expected to supply are:

�� Name, Short Name, Vendor
�� Which ICON (resource ID) should be used for this protocol
�� Which color must be used for this protocol in the “raw” view

Unsniff Plugin Developer’s Guide | 81

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

QuickParse Parse the packet in (Data Data Data Data of length DataLengthDataLengthDataLengthDataLength) and provide

the following information
�� Number of bytes that you can handle
�� A description of the packet. This will be shown in the main

packet index sheet in Unsniff
�� What happens next (Disposition Code)? You can specify

how the next layer protocol is selected or if this is the last
protocol in the chain.

ProvideFieldDefs Define all the protocol fields

Observe that a couple of dummy fields have already been defined
for you (Example 1 and Example 2). You will be defining fields for
the HelloProtocol in this method later

BreakoutFields Push the fields onto the field stack in the correct order
Observe that the dummy fields have been pushed onto the stack

GetPrefAPHosts Get Preferred Access Point Hosts
Specify how this protocol is wired up to the access point framework
in Unsniff. Note that our HelloProtocol prefers to run on UDP port
10001, we will be specifying this information here

ProvideHelpDefs Provide Field Level Help definitions
Observe that two dummy field level help has already been provided.
We just have to fill up help for our HelloWorld fields here

7. Define Ids for fields. Each field can have a unique identifier. The easiest way to do this is

using C++ enum. Open up HelloWorld.h. You can see that the Wizard has already
added a Enum typedef for you. You just have to replace the dummy entries with your
protocol entries. In this case we need to define two fields.
(Note that the FieldIDs start at 0)

// Field IDs - define a numeric ID for each predefined field
typedef enum
{

FID_MESSAGE_TYPE=0,
FID_CHECKSUM,

} FIELD_IDS_T;

8. Method ProvideID() : We can leave it as it is. It already initialized correctly from the

wizards.

82 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

9. Method QuickParse(): We want to customize this method using our knowledge of

HelloWorld:

�� A Hello World packet is 5 bytes fixed
�� HelloWorld does not carry any other protocols
�� We want to construct a description of the packet

BOOLBOOLBOOLBOOL CHelloWorld::QuickParse(UCHAR * Data, USHORT DataLength)CHelloWorld::QuickParse(UCHAR * Data, USHORT DataLength)CHelloWorld::QuickParse(UCHAR * Data, USHORT DataLength)CHelloWorld::QuickParse(UCHAR * Data, USHORT DataLength)

 static char buf[256];

 // A description
 typedef struct {
 BYTE MsgType;
 DWORD DataLength;
 } HDR_T, * PHDR_T;

 // Check minimum length
 if (DataLength < 5) {

 return FALSE;
 }

 // Get a packet description (alternately you can use UserGetEnumString
 // API function)
 PHDR_T ph = (PHDR_T) Data;
 const char * pszType="Unknown";
 switch (ph->MsgType)
 {

 case 0 : pszType = "Hello City";break;
 case 1 : pszType = "Hello Country";break;
 case 2 : pszType = "Hello World";break;

 case 3 : pszType = "Hello Martians";break;
 default : pszType = "Hello Stranger";break;

 }

 // Print a description
 //
 DWORD checksum = ntohl(ph->DataLength);
 sprintf(buf,"Hello World Packet, %s, checksum 0x%x", pszType,checksum);

 // Call UserInitQP with all the required information
 //
 UserInitQP(5, UserInitQP(5, UserInitQP(5, UserInitQP(5, // 5 bytes// 5 bytes// 5 bytes// 5 bytes

 DISPO_END, DISPO_END, DISPO_END, DISPO_END, // No more protocols running on HelloWorld // No more protocols running on HelloWorld // No more protocols running on HelloWorld // No more protocols running on HelloWorld
 IID_NULL, IID_NULL, IID_NULL, IID_NULL, // No next protocol ID// No next protocol ID// No next protocol ID// No next protocol ID
 buf buf buf buf // Short packet de// Short packet de// Short packet de// Short packet descriptionscriptionscriptionscription

););););

 return TRUE;
}

� Tip
 This above example is designed to demonstrate how to get at the raw packet data. There are
several helper macros and functions available that can make your code shorter. You can use
UserGetEnumString() to query a enum field. This will obviate the need for the switch(x)
statement. You can also use the HPTRVAL_xxxx macros for network-host order conversions.

Unsniff Plugin Developer’s Guide | 83

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

10. Method ProvideFieldDefs(): In this we add the two fields MessageType and Checksum

�� We will use an Enum field (CUSNFEnumField) for MessageType and
CUSNFNumericField for Checksum

�� We want to label message type and display the checksum in hex
�� We want the MessageType field to be filterable

 BOOL CHelloWorld::ProvideFieldDefs() BOOL CHelloWorld::ProvideFieldDefs() BOOL CHelloWorld::ProvideFieldDefs() BOOL CHelloWorld::ProvideFieldDefs()
 {

USNF_BEGIN_ENUM_DEF(MessageTypesMessageTypesMessageTypesMessageTypes)
ENUM_ENTRY(0, "Hello City")
ENUM_ENTRY(1, "Hello Country")
ENUM_ENTRY(2, "Hello World")
ENUM_ENTRY(3, "Hello Mars"

USNF_END_ENUM_DEF()

// Message type field
UserAddFieldDefUserAddFieldDefUserAddFieldDefUserAddFieldDef(FID_MESSAGE_TYPE,

 new CUSNFEnumFieldCUSNFEnumFieldCUSNFEnumFieldCUSNFEnumField(_T("Message Type"),/* Name */
 _T("MsgType"), /* Short name*/
 FW_8BITS, /* Width */
 FS_LABEL|FS_FILTER, /* Style */
 USE_ENUM(MessageTypesMessageTypesMessageTypesMessageTypes) /* Enum name*/

));

// Checksum field
UserAddFieldDefUserAddFieldDefUserAddFieldDefUserAddFieldDef(FID_CHECKSUM,

new CUSNFNumericFieldCUSNFNumericFieldCUSNFNumericFieldCUSNFNumericField(_T("Checksum"),/* Name */
 FW_32BITS, /* Width */
 FS_HEX /* Style */
));

return TRUE;
 }

11. Method BreakoutFIelds(): We just push the two fields onto the stack. FieldStm is a
stream operator that provides access to the Field Stack.

BOOLBOOLBOOLBOOL CHelloWorld::BreakoutFields(UCHAR * Data, USHORT DataLength)CHelloWorld::BreakoutFields(UCHAR * Data, USHORT DataLength)CHelloWorld::BreakoutFields(UCHAR * Data, USHORT DataLength)CHelloWorld::BreakoutFields(UCHAR * Data, USHORT DataLength)
{
 FieldStmFieldStmFieldStmFieldStm << FID_MESSAGE_TYPE << FID_CHECKSUM;

 return TRUE;
}

12. Method GetPrefAPHosts(): We need to specify our preferred access points. We know

that HelloWorld is using UDP Port 10001. We just specify that here.

STDMETHODIMP CHelloWorld::GetPrefAPHosts(USHORT *pnHosts,ACCPT_T **ppHosts)STDMETHODIMP CHelloWorld::GetPrefAPHosts(USHORT *pnHosts,ACCPT_T **ppHosts)STDMETHODIMP CHelloWorld::GetPrefAPHosts(USHORT *pnHosts,ACCPT_T **ppHosts)STDMETHODIMP CHelloWorld::GetPrefAPHosts(USHORT *pnHosts,ACCPT_T **ppHosts)
{
 USNF_BEGIN_ACCESSPOINT_DEF()
 AP_ENTRY(10001100011000110001,UPID_UDPUPID_UDPUPID_UDPUPID_UDP)
 USNF_END_ACCESSPOINT_DEF();

 return S_OK;
}

84 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

13. Method ProvideHelpDefs(): We can provide field-level help defs for selected fields here.
This adds immense value to the packet breakout display. The text you specify will appear
in the Balloon Help along with the current value of the field.

BOOL CHelloWorld::ProvideHelpDefs()BOOL CHelloWorld::ProvideHelpDefs()BOOL CHelloWorld::ProvideHelpDefs()BOOL CHelloWorld::ProvideHelpDefs()
{
 USNF_BEGIN_HELP_DEF()
 HELP_ENTRY(FID_MESSAGE_TYPEFID_MESSAGE_TYPEFID_MESSAGE_TYPEFID_MESSAGE_TYPE,
 “HelloWorld Message Type\n”
 "This determines the type of hello \n"
 "Eg. 0=HelloCity, 1=HelloCountry, etc\n")

 HELP_ENTRY(FID_CHECKSUMFID_CHECKSUMFID_CHECKSUMFID_CHECKSUM,
 “Message Checksum\n”
 "A checksum of the HelloWorld Packet\n"
 "including the header\n")

 USNF_END_HELP_DEF();
}

14. That’s it! You can press F-7 to build your plugin now. It should build without errors

Testing your plugin

15. Build the plugin without errors (Press F-7)

16. Install your plugin (HelloWorld.dll) using instructions in Sec 5.2

17. Test your plugin by importing the HelloWorld.pcap sample capture file in the

samples/captures directory:

a. Import the capture file
b. Observe how your protocol is displayed

Congratulations !

Now we can move on to more complex plugins

Unsniff Plugin Developer’s Guide | 85

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

5.4 Handling Stream Based Protocols

Stream based protocols are those that run on top of a layer such as TCP. These protocols are
message based and do not care about packet boundaries. These protocols transmit data is
PDUs. Unsniff provides the best support for creating and displaying PDUs.

��Info
 As of this release the only stream layer supported by Unsniff is TCP

Using Streams
Streams provide a reliable bi-directional data transmission pipeline between two endpoints. The
Unsniff API framework handles all retransmissions, duplicate packets, missing packets, and
reassembly. All you have to do is use the IUSNFStream interface and read from it as if it were a
regular socket and construct PDUs.

5.4.1 Adding support for stream based protocols

The easiest way to add support for streams is at the time of using the Unsniff ATL COM Object
Wizard. See Section 5.2

86 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

5.4.2 The IUSNFStream interface

This interface is used to wire up your plugin to the Unsniff stream handler mechanism. You can
read from this interface as if it were a regular file. As bytes are reassembled by Unsniff you will be
notified – you can then read from this stream and construct PDUs.

Concepts

The figure below shows a bi-directional stream. You can read from the stream just as you would
from a file. The important thing is that IN and OUT directions are distinct. Each direction has its
own seek pointer, EOF (End of File marker), and contents.

All stream operations are available via the IUSNFStream interface

Interface Methods

Each method requires you to specify a direction. Use the enum values:

�� SD_IN : Stream Direction In (For TCP this is the direction of the SYN+ACK packet)
�� SD_OUT : Stream Direction Out (For TCP this the direction of the initial SYN)

Method Parameters Purpose
GetSeekPos In - Direction

Out - Seek Position
Retrieve the current seek position of
the stream. Both Peek and Read
will start from this position

SetSeekPos In - Direction
In - Seek Position

Explicitly set the seek position

SD_OUT
(Out Direction)

SD_IN
(In Direction)

Bi Directional Stream

Current Seek Pointer Stream Begin
(Seek = 0)

Current EOF
Will advance as bytes
are reassembled

Seek Pointers for
SD OUT direction

Unsniff Plugin Developer’s Guide | 87

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

IncSeekPos In – Direction

In – Delta
Increments the seek position
relative to the current position

IsEOF In – Direction
Out – True/False

Are there no more bytes to be read
in the given direction at the
moment.

Read In – Direction
In – Number of Bytes
Out – Bytes

Read the specified number of bytes
starting from the seek position. This
command advances the seek
position if the Read is successful.

Peek In – Direction
In – Number of Bytes
Out – Bytes

Same as Read; but this command
does not update the seek position.

GetSize In – Direction
Out – Size

Total number of bytes in the stream
for the given direction

SetCookie12 In – DWORD cookie You can attach a user-defined
cookie to this stream. Use this if you
want to distinguish between
streams.

GetCookie Out – DWORD cookie The cookie that is currently
associated with this stream

GetBytesRemaining In – Direction
Out – Bytes

Number of bytes available in this
direction at the moment. This is
nothing but : EOF – Current Seek
Position

GetStreamSessTuple Out – Stream Sess Tuple The actual address information
associated with this stream. Use
this if you want to get at the
Ipv4/Ipv6/ TCP ports

SeekPattern In – Direction
In – Pattern
Out – Seek Position

Search for a pattern. Use this to
synchronize a stream. For example:
the BGP plugin will search for 16
bytes of ‘FF’. That indicates the
start of the BGP header

GetStreamID Out – ID An Integer ID for the stream
assigned by Unsniff

GetStartTimestamp Out – Timestamp When did this stream start. For TCP
streams, this is when the first SYN
segment was seen.13

GetSrcAddress Out – source address Source address of the stream
GetDestAddress Out – destination address Destination address of the stream

12 You can use cookies to save some user defined data for each stream
13 If the SYN packet is not seen at all; when you are barging in on an existing TCP stream. Then
the timestamp will be that of the first packet seen on that stream (could be either direction)

88 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

5.4.3 Writing Stream based Plugins

Study the class generated by the Unsniff Plugin ATL COM Object Wizard; when the Stream
Based Protocol option is checked.

You will find that in addition to the usual methods (See Section 5.3.1). You now have the
following additional methods.

Method Name Purpose
IsNotifyProgress What kind of stream notification do you want ?

Progress: Notify as data is collected
End Only: Notify only when stream is opened or closed

Use Progress for long running streams (such as a BGP connection)
Use End Only for short request-response protocols such as HTTP

GetNotifyChunkSize Notify Chunk Size
If you want to be notified on progress – what is the minimum
amount of data that must collect before you want to be notified.

StreamStart Called by the framework when a new stream has started
The corresponding interface IUSNFStream is passed to you. You
can use this method to take action if you want.

StreamClose Called by the framework when a new stream has ended
The corresponding interface IUSNFStream is passed to you. You
can use this method to take action if you want.

StreamIncomplete The stream did not end properly
The corresponding interface IUSNFStream is passed to you. You
can use this method to take action if you want.
For TCP: This happens when the capture is stopped before Unsniff
sees the FIN or RST sequence. This can also happen if there is an
error in the FIN 4- way handshake.

StreamNotify Notification of activity on the stream
The given stream has some activity on it. You are supposed to read
both directions of the stream and construct PDUs or UserObjects14
from it.

14 Not discussed in this section

Unsniff Plugin Developer’s Guide | 89

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

5.4.4 Stream Example (LDAP)

LDAP is a stream based protocol. LDAP messages can be much larger than Ethernet frames
(1500 bytes) or many LDAP messages can fit inside an Ethernet frame. The example below
works with streams. We will listen to streams and generate LDAP PDUs.

These PDUs will appear in the PDU Sheet of Unsniff as shown below. Notice that some packet
sizes are much larger than the Ethernet frame size.

LDAP Pseudo-Code: Only StreamNotify has been customized. All other Stream functions shown
in Table xx, have been left alone – unchanged from the Unsniff ATL COM Object Wizard
generated code.

StreamNotify (Direction, Stream)

1. While we will have enough to work in the given Direction – Repeat Steps 2-5
2. Peek at a small number of header bytes from which we hope to deduce the total message

length. For LDAP 10 bytes are enough to parse the ASN.1 length, which indicates the
total length of the message

3. Calculate the total length of the message from the “peeked” header
4. Check if you have the total number of bytes in the stream (from total length)
5. If the entire message has been read, then its is party time. We can go ahead and create

the PDU. This PDU will then show up in the PDU Sheet

Code Snippet

STDMETHODIMP CPILdapDeSTDMETHODIMP CPILdapDeSTDMETHODIMP CPILdapDeSTDMETHODIMP CPILdapDemo::StreamNotify(/*[in]*/ IUSNFStream * pSTM)mo::StreamNotify(/*[in]*/ IUSNFStream * pSTM)mo::StreamNotify(/*[in]*/ IUSNFStream * pSTM)mo::StreamNotify(/*[in]*/ IUSNFStream * pSTM)
{
 HRESULT hr;

 //
 // Process IN direction and OUT direction separately
 //
 hr=StreamNotifyStreamNotifyStreamNotifyStreamNotify(SD_IN,pSTM);
 if (FAILED(hr))return hr;

 hr=StreamNotifyStreamNotifyStreamNotifyStreamNotify(SD_OUT,pSTM);
 return hr;
}
// Helper function (not generated by wizard)
HRESULT CPILdapDemo::StreamNotify(STREAM_DIR_T eDir, IUSNFStream * pSTM)HRESULT CPILdapDemo::StreamNotify(STREAM_DIR_T eDir, IUSNFStream * pSTM)HRESULT CPILdapDemo::StreamNotify(STREAM_DIR_T eDir, IUSNFStream * pSTM)HRESULT CPILdapDemo::StreamNotify(STREAM_DIR_T eDir, IUSNFStream * pSTM)
{
 HRESULT hr;
 BYTE buf[LDAP_MIN_SIZE]; // enough to parse the packet length
 ULONG nRead;

 // Handle all request / response pairs

90 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

 bool done=false;
 while (!done)
 {
 // End of file is reached, we are done
 VARIANT_BOOL vbEOF;
 pSTMpSTMpSTMpSTM---->IsEOF(eDir, &vbEOF);>IsEOF(eDir, &vbEOF);>IsEOF(eDir, &vbEOF);>IsEOF(eDir, &vbEOF);
 if (vbEOF==VARIANT_TRUE) {
 ATLTRACE("LDAP:NSTM:At EOF\n");
 done = true;
 continue;
 }

 // *Peek* LDAP Header
 hr=pSTMhr=pSTMhr=pSTMhr=pSTM---->Peek(eDir,LDAP_MIN_SIZE,b>Peek(eDir,LDAP_MIN_SIZE,b>Peek(eDir,LDAP_MIN_SIZE,b>Peek(eDir,LDAP_MIN_SIZE,buf,&nRead);uf,&nRead);uf,&nRead);uf,&nRead);
 if (hr==S_FALSE) {
 ATLTRACE("LDAP:NSTM:Cant peek at LDAP Header\n");
 done=true;
 continue;
 }
 ULONG ASNType=0L;
 ULONG PDULength=0L;
 if (*buf==0x30) {
 const BYTE * pptr = ASNBERUtils::ParseType(buf,&ASNType);
 pptr=ASNBERUtils::ParseLength(pptr,&PDULength);
 PDULength += (pptr-buf);
 }

 // Do we have complete message in stream
 ULONG uBytes=0L;
 hr=pSTMhr=pSTMhr=pSTMhr=pSTM---->GetBytesRemaining(eDir,&uBytes);>GetBytesRemaining(eDir,&uBytes);>GetBytesRemaining(eDir,&uBytes);>GetBytesRemaining(eDir,&uBytes);
 if (uBytes<PDULength)
 {

// Not enough bytes have been read to create a PDU
 done=true;
 continue;
 }

 ULONG nRead=0L;
 LPCTSTR lpszDesc = "LDAP PDU (Big Encap)";
 pSTMpSTMpSTMpSTM---->Peek(eDir,WORKBUF_SIZE,WorkBuf,&nRead);>Peek(eDir,WORKBUF_SIZE,WorkBuf,&nRead);>Peek(eDir,WORKBUF_SIZE,WorkBuf,&nRead);>Peek(eDir,WORKBUF_SIZE,WorkBuf,&nRead);
 lpszDesc=GetPacketDescription(WorkBuf);

 //
 // Ok! Now are all set to create a LDAP PDU
 //
 IUSNFPDU * pPDU=NULL;
 hr=m_pContainerhr=m_pContainerhr=m_pContainerhr=m_pContainer---->CreateNewPDU(&pPDU);>CreateNewPDU(&pPDU);>CreateNewPDU(&pPDU);>CreateNewPDU(&pPDU);
 if (FAILED(hr)||pPDU==NULL)
 {
 ATLTRACE("LDAP, Cannot Create PDU , Out of Memory\n");
 return E_OUTOFMEMORY;
 }
 pPDUpPDUpPDUpPDU---->SetProtGUID(UPID_LDAP);>SetProtGUID(UPID_LDAP);>SetProtGUID(UPID_LDAP);>SetProtGUID(UPID_LDAP);
 pPDUpPDUpPDUpPDU---->SetDescription(CComBSTR(lpszDesc),UserGetDB>SetDescription(CComBSTR(lpszDesc),UserGetDB>SetDescription(CComBSTR(lpszDesc),UserGetDB>SetDescription(CComBSTR(lpszDesc),UserGetDBCookie());Cookie());Cookie());Cookie());
 pPDUpPDUpPDUpPDU---->SetStreamDataFromSeek(pSTM,eDir,PDULength);>SetStreamDataFromSeek(pSTM,eDir,PDULength);>SetStreamDataFromSeek(pSTM,eDir,PDULength);>SetStreamDataFromSeek(pSTM,eDir,PDULength);
 pSTMpSTMpSTMpSTM---->IncSeekPos(eDir,PDULength);>IncSeekPos(eDir,PDULength);>IncSeekPos(eDir,PDULength);>IncSeekPos(eDir,PDULength);
 }

 m_pContainer->UpdateDisplay();
 return S_OK;
}

Unsniff Plugin Developer’s Guide | 91

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

5.5 Defining Fields

Section 4, contains an in-depth look at the concept of fields in Unsniff. This section is designed to
address issues specific to C++ plugins.

5.5.1 Alternate methods
Strictly speaking you do not need to define any fields. You can add fields directly during the
breakout process by dynamically creating them and pushing them on to the field stack.

Consider the HelloWorld protocol

The code snippet below pushed the two predefined fields FID_MESSAGE_TYPE and
FID_CHECKSUM on to the fiels stack.

 FieldStmFieldStmFieldStmFieldStm << FID_MESSAGE_TYPE << FID_CHECKSUM;

This could also have been written like below without using any field definitions:

 FieldStmFieldStmFieldStmFieldStm << new CUSNFEnumFieldCUSNFEnumFieldCUSNFEnumFieldCUSNFEnumField(“Message Type”, ..)

 << new CUSNFNumericFieldCUSNFNumericFieldCUSNFNumericFieldCUSNFNumericField(“Checksum”, FW_32BITS,. .) ;

This technique has major disadvantages.

1. The performance will be slower
2. One of Unsniffs main design principles is to separate field definitions (which is largely a

documentation task) from the task of analyzing a given packet. This technique subverts
that principle. The result is confusing code that is difficult to write and maintain

3. You cannot use some key techniques like variables, auto-repeats, conditional fields, and
autosizing.

There is however times when you may want to use this technique.

1. You do not know the field names until you see the packet itself.
For example, if the protocol consists of a sequence of {Field-name, Field-value} pairs
separated by a ‘:’. You may have to resort to this technique like shown below:

 LPCTSTR lpszFieldName = = = = GetFieldName(Data,’:’); (Data,’:’); (Data,’:’); (Data,’:’); // parse name
 LPCTSTR lpszFieldValue = = = = GetFieldValue(Data,’(Data,’(Data,’(Data,’\\\\n’);n’);n’);n’); // parse value

 FieldStmFieldStmFieldStmFieldStm << new CUSNFStringFieldCUSNFStringFieldCUSNFStringFieldCUSNFStringField(lpszFieldName,
 TOBITS(_tcslen(lpszFieldName)+1),
 FS_PLAIN);

 FieldStmFieldStmFieldStmFieldStm << new CUSNFStringCUSNFStringCUSNFStringCUSNFStringFieldFieldFieldField(lpszFieldValue,
 TOBITS(_tcslen(lpszFieldValue)+1),
 FS_PLAIN);

2. This could be used to represent an unsupported part of the protocol. In the example
below we do not know how to parse 40 bytes of EXOTIC_MESSAGE

 If (MsgType == MSG_EXOTIC_MESSAGE) {

 FieldStmFieldStmFieldStmFieldStm << new CUSNFBinaryFieldCUSNFBinaryFieldCUSNFBinaryFieldCUSNFBinaryField(“Unknown block of 40 bytes”,
 TOBITS(40),
 FS_PLAIN);

92 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

5.5.2 Using FieldStm

FieldStm provides the main interface to the field stack. Every C++ plugin automatically has
access to the FieldStm object. The following operators are defined for FieldStm:

Operator Explanation
FieldStm << FIELD_ID; Push a field identified by the integer

FIELD_ID onto the field stack.

FieldStm << “Field Name”;

Push a field named “Field Name” onto the
field stack. Use this method for fields
defined by XML. You are expected to
ensure the uniqueness of the name while
defining the XML field definitions. You may
have to use the <id> attribute.

FieldStm << new CUSNFField(. .);

Push a dynamically created field onto the
field stack. You do not have to worry about
deleting the field.

FieldStm <<
 STM_BEGIN_RECORD(“record 1”);

Begin a new record named “record 1”. All
subsequent fields pushed will be added to
this record. This will end when a
STM_END_RECORD is seen.

FieldStm << STM_END_RECORD;

End the previous STM_BEGIN_RECORD

FieldStm <<
 STM_COMMENT(“My comment”);

A comment field. You can use comment
fields to add your own elements to the
details tree.

DWORD dwType;
FieldStm <<
 STM_SAVE_NUMERIC(FID_TYPE, dwType)

Push the numeric field FID_TYPE and save
its value into the variable dwType. This only
works for numeric fields

FieldStm << STM_NULL;

No op.

FieldStm <<
STM_USE_DELAYLOADGROUP(“Management
 Frames”);

We want to use the fields defined in the
delay load group “Management Frames”.
See section 4.x for information on delay
loading.

Usage Notes:

Typically, you will want to chain the fields together to create a highly readable and easy to
maintain breakout.

In the example below we add the structure for a 802.11 Beacon.

 FieldStm << STM_BEGIN_RECORD("Beacon")
 << FID_MG_TIMESTAMP
 << FID_MG_BEACON_INTERVAL
 << FID_MG_CAPABILITY
 << FID_MG_SSID;

Unsniff Plugin Developer’s Guide | 93

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

5.5.3 UserAddFieldDef method

This is the method used to add a field definition. The prototype for this method is:

BOOL UserAddFieldDef (DWORD FieldId, CUSNFField * pField);

Parameters

Name Description
DWORD FieldID A 32 Bit field ID

Each field defined must have a unique ID. The
easiest way to do this is to use an enum.
When you use the Unsniff ATL COM Object wizard,
a sample enum block is generated for you in the *.h
file.

CUSNFField * pField A newly constructed field object.

All field objects must be derived from the
CUSNFField object.

Return values:

�� TRUE if success
�� FALSE if failure

If there was a failure, you can see the reason for failure in the Unsniff Log Window

Usage Notes:

Creating fields

You must explicitly create the field that is passed to UserAddFieldDef in the pField parameter. Do
not use fields created on the stack or as member variables.

Destroying the field

You do not have to worry about destroying the CUSNFField derived object that you passed to
UserAddFieldDef. The Unsniff API Framework will take control of managing the lifetime of the
field. It will destroy the field when it is no longer needed.

94 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

5.6 Accounting

Unsniff extends powerful accounting capabilities to your plugin. Your protocol can account for
number of message subtypes within your protocol. You get to define what types you want to
account and perform the actual accounting itself. The results of your accounting are shown in the
“Statistics” tab in the Unsniff application.

��Info
The accounting feature is not available to pure XML plugins

5.6.1 Add Accounting support
The easiest way to support accounting in your plugin is to check the “Supports Accounting”
checkbox in the Unsniff ATL COM Object Wizard . This will automatically add the skeleton code
needed to support accounting.

The methods related to accounting are:
Method Parameters Purpose
ProvideAcctDefs None Provide a list of items you wish to account for.

This is typically a set of sub message types.
Each accounting item is identified by a unique ID
and a short name.

QuickParse In - Data
In - DataLength

This function is called for each packet. It is your
job to quickly scan the packet and update the
correct accounting items based on the data
contained in the packet.

UserUpdateAcct In – Accounting
Item ID

Indicate to the API that we want to update the
accounting item with the ID. The Unsniff API
automatically increments the packet count and
byte count for this item.

USNF_ACCT_ENTRY
Macro

Item Id
Prot GUID
Name

Use this macro to define a single accounting
item. The Prot GUID parameter is used to attach
a protocol to this accounting item. Use prot GUID
of GUID_NULL if there is no chance of expanding
this accounting item further.

Unsniff Plugin Developer’s Guide | 95

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

5.6.2 An Example
Consider the HTTP protocol. We want to account for each of the sub types. We want the
statistics for HTTP protocol to appear as shown below. The statistics is available in the Statistics
Sheet in Unsniff. You can expand each protocol to access sub type accounting by clicking on the
“�” on the graph.

Assign IDs
First we have to assign a unique integer ID for each accounting item. This easiest way to do this
is to create an enum in your class header file. If you used the wizard, this block of code is already
created for you – you just have to replace the contents with your accounting items.

// Accounting items// Accounting items// Accounting items// Accounting items
typedef enumtypedef enumtypedef enumtypedef enum
{{{{
 ACCT_OTHER=0,ACCT_OTHER=0,ACCT_OTHER=0,ACCT_OTHER=0,
 ACCT_OPTIONS,ACCT_OPTIONS,ACCT_OPTIONS,ACCT_OPTIONS,

ACCT_GET,ACCT_GET,ACCT_GET,ACCT_GET,
 ACCT_HEAD,ACCT_HEAD,ACCT_HEAD,ACCT_HEAD,

 // . . . define other items here

ACCT_SERVER_ERROR,ACCT_SERVER_ERROR,ACCT_SERVER_ERROR,ACCT_SERVER_ERROR,

 ACCT_DATA,ACCT_DATA,ACCT_DATA,ACCT_DATA,
} ACCOUNTING_ITEMS_T;} ACCOUNTING_ITEMS_T;} ACCOUNTING_ITEMS_T;} ACCOUNTING_ITEMS_T;

Provide Acct Defs
 We have to flesh out the ProvideAcctDefs() method. In this method you must define each
accounting item name, its ID (see above step), and a protocol GUID. You can use a GUID_NULL
if the accounting item is not attached to any specific top-level protocol.

BOOLBOOLBOOLBOOL CPIHTTP::ProvideAcctDefs()CPIHTTP::ProvideAcctDefs()CPIHTTP::ProvideAcctDefs()CPIHTTP::ProvideAcctDefs()
{{{{
 // Add accounting items below, see example// Add accounting items below, see example// Add accounting items below, see example// Add accounting items below, see example
 USNF_BEGIN_ACCT_DEF() USNF_BEGIN_ACCT_DEF() USNF_BEGIN_ACCT_DEF() USNF_BEGIN_ACCT_DEF()
 USNF_ACCT_ENTRY(ACCT_OTHER, GUID_NULL, "Other");USNF_ACCT_ENTRY(ACCT_OTHER, GUID_NULL, "Other");USNF_ACCT_ENTRY(ACCT_OTHER, GUID_NULL, "Other");USNF_ACCT_ENTRY(ACCT_OTHER, GUID_NULL, "Other");
 USNF_ACCT_ENTRY(ACCT_GET, GUID_NULL, "GET");USNF_ACCT_ENTRY(ACCT_GET, GUID_NULL, "GET");USNF_ACCT_ENTRY(ACCT_GET, GUID_NULL, "GET");USNF_ACCT_ENTRY(ACCT_GET, GUID_NULL, "GET");

 // . . . define other message types

 USNF_ACCT_ENTRY(ACCT_POST, GUID_NULL, "POST");USNF_ACCT_ENTRY(ACCT_POST, GUID_NULL, "POST");USNF_ACCT_ENTRY(ACCT_POST, GUID_NULL, "POST");USNF_ACCT_ENTRY(ACCT_POST, GUID_NULL, "POST");
 USNF_ACCT_ENTRY(ACCT_PUT, GUID_NULL, "PUT");USNF_ACCT_ENTRY(ACCT_PUT, GUID_NULL, "PUT");USNF_ACCT_ENTRY(ACCT_PUT, GUID_NULL, "PUT");USNF_ACCT_ENTRY(ACCT_PUT, GUID_NULL, "PUT");
 USNF_ACCT_ENTRY(ACCT_SUCCESS,GUID_NULL, "Ok 2xx");USNF_ACCT_ENTRY(ACCT_SUCCESS,GUID_NULL, "Ok 2xx");USNF_ACCT_ENTRY(ACCT_SUCCESS,GUID_NULL, "Ok 2xx");USNF_ACCT_ENTRY(ACCT_SUCCESS,GUID_NULL, "Ok 2xx");
 USNF_END_ACCT_DEF()USNF_END_ACCT_DEF()USNF_END_ACCT_DEF()USNF_END_ACCT_DEF()
}}}}

96 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

Perform Accounting
In the QuickParse method, look at the packet data and update accounting information for your
items.

BOOLBOOLBOOLBOOL CPIHTTP::QuickParse(UCHAR * Data, USHORT DataLength)CPIHTTP::QuickParse(UCHAR * Data, USHORT DataLength)CPIHTTP::QuickParse(UCHAR * Data, USHORT DataLength)CPIHTTP::QuickParse(UCHAR * Data, USHORT DataLength)
{{{{

 if (PacketType (Data) is ”GETGETGETGET”)
 UserUpdateAcct(ACCT_GET);UserUpdateAcct(ACCT_GET);UserUpdateAcct(ACCT_GET);UserUpdateAcct(ACCT_GET);

 if (PacketType (Data) is ”POSTPOSTPOSTPOST”)
 UserUpdateAcct(ACCT_POST);UserUpdateAcct(ACCT_POST);UserUpdateAcct(ACCT_POST);UserUpdateAcct(ACCT_POST);

// . . . define other message types

5.6.3 Add accounting manually
The Unsniff ATL COM Object Wizard is the best way to add accounting support to a new plugin. If
you have already created a plugin without accounting support and later wish to add accounting
support to it; you will have to do it manually.

In your header file “MyPlugin.h”:

�� Include the file #include “USNFAcctImpl.h” and add the following line to the
inheritance chain of your class public CUSNFAcctImpl<IUSNFAccounting>

�� Add the IUSNFAccounting interface to the COM MAP as shown below:

BEGIN_COM_MAP(CMyPlugin)

 other interfaces

 COM_INTERFACE_ENTRY(IUSNFAccounting)COM_INTERFACE_ENTRY(IUSNFAccounting)COM_INTERFACE_ENTRY(IUSNFAccounting)COM_INTERFACE_ENTRY(IUSNFAccounting)

 other interfaces

END_COM_MAP()

�� Add the following function prototype for the ProvideAcctDefs() method.

public:

Virtual BOOL ProvideAcctDefs();

In your implementation file “MyPlugin.cpp”:

�� Implement the ProvideAcctDefs() method

<End of task>

Unsniff Plugin Developer’s Guide | 97

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

5.7 Configuration Parameters

Ok so your have written a plugin, now you want to allow the user to customize your plugin. This is
done via configuration parameters. You can specify your parameters inside your plugin – these
parameters are then managed via the Plugs->Configuration menu bar.

��Info
The configuration parameters feature is not available to pure XML plugins.

5.7.1 Add Configuration Support
The easiest way to add configuration support is to check the “Has Configurable Preferences” in
the Unsniff Plugin ATL COM Object Wizard. This will automatically add the skeleton and even a
couple of sample configuration parameters. You just have to replace the sample configuration
parameters with your own. Each configuration parameter consists of:

�� A Key String used to uniquely identify the parameter. The key must be unique within your
plugin

�� A Data type. This helps Unsniff manage the parameter by using the correct GUI controls.

The methods related to configuration support are:

Method Parameters Purpose
ProvideConfigDefs None Provide a list of configuration parameters. This

list will be managed by Unsniff.
OnConfigChange None The configuration might have changed. You

should update your state with the new
configuration by issuing
UserQueryConfigXXXX() calls.

UserQueryConfigXXXX() In – Key
Out – Value

Different variants of this method exist. Select
the method that is appropriate for the data type
of the configuration entry.

5.7.2 Unsniff Plugin Configuration
The configuration parameters you define will be managed by Unsniff. You can bring up the dialog
by selecting “Plugins � Configure” menu item. Your plugin will have its parameters grouped
together as a separate node.

�� Specify the value for the configuration parameter from the right column

�� Click on any parameter to access help for that parameter

98 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

5.7.3 The USNF_xxxx_CONFIG_ENTRY macro

Types of Configuration Parameters:
You define configuration parameters using the USNF_xxxx_CONFIG_ENTRY macro. The
xxxx must be substituted for the correct data type. You must define each configuration entry using
the correct macro for that type. The macro has the following prototype.

USNF_xxxx_CONFIG_ENTRY(Key, Name, Help String, Default Value)

Type Explanation
Key A string that uniquely identifies the parameters. This key must be unique

within your plugin
Name The name of the configuration parameter. This appears in the Unsniff

“Customize Plugins” dialog as shown here.

Help Text A string explaining in detail the purpose of the configuration parameter.
This enables you to define clean and self-documenting parameters. The
help text is shown below

Default Value The initial or default value of the parameter. This varies by the data type
of the parameter.

Data types
The following data types are defined.
Type Explanation
String
USNF_STRING_CONFIG_ENTRY

The parameter is a string.

Numeric
USNF_NUMERIC_CONFIG_ENTRY

The parameter is a 32-bit number.

Boolean
USNF_BOOL_CONFIG_ENTRY

A Boolean (True/False) parameter

Enum
USNF_ENUM_CONFIG_ENTRY

The user can choose a single item from a list of options. An
example is shown below. The use can select one of three
options to format the TOS field.

Unsniff Plugin Developer’s Guide | 99

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

Enum Multiselect
USNF_ENUM_MULTISELECT_CONFIG_ENTRY

The configuration parameter consists of several items that the
user has specified. In the example below, the user can choose
any combination of the three options.

Color
USNF_COLOR_CONFIG_ENTRY

The parameter is a color.

Query the current value of the configuration parameter:

The UserQueryConfigXXXX() method is used to query the current value of the parameter.

BOOL UserQueryConfigBool(LPCTSTR lpszKey, bool * pOut);
BOOL UserQueryConfigNumeric(LPCTSTR lpszKey, DWORD * pOut);
BOOL UserQueryConfigColor(LPCTSTR lpszKey, COLORREF * pOut);
BOOL UserQueryConfigString(LPCTSTR lpszKey, LPCTSTR * pOut);
BOOL UserQueryConfigChoice(LPCTSTR lpszKey, USHORT * pOut);
BOOL UserQueryConfigMultichoice(LPCTSTR lpszKey, int nArraySize, USHORT * pArray)

All the methods are pretty simple. They query a parameter using a key and return the value into a
pointer.

The UserQueryConfigMultiChoice() method uses an extra parameter. The pArray is an array of
size nArraySize. Upon return from the function the array contains a map of what items were set.
Array[0] = 1 if the first item was selected, Array [1] = 0 means the second item was not selected.

5.7.4 An Example
A simple example is in order. We want the user to specify two parameters:

1. Whether the plugin should extract any hostnames by listening to packets (Default TRUE)

2. Allow user to select any combination of Flags to display in detail (there are 3 choices

shown to the user Plain Flags, NB Flags, NS Flags) (Default : Show Plain and NB Flags)

100 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

Provide Configuration Parameter Definitions
Fill out the ProvideConfigDefs() method generated by the wizard. Note that the entire block is
defined within the BEGIN_CONFIG_DEF and END_CONFIG_DEF section.

BOOLBOOLBOOLBOOL CMyPlugin::ProvideConfigDefs()CMyPlugin::ProvideConfigDefs()CMyPlugin::ProvideConfigDefs()CMyPlugin::ProvideConfigDefs()
{
 // String tables
 USNF_BEGIN_STRING_TABLE(FlagOptions)USNF_BEGIN_STRING_TABLE(FlagOptions)USNF_BEGIN_STRING_TABLE(FlagOptions)USNF_BEGIN_STRING_TABLE(FlagOptions)
 USNF_STRING("Breakout Flags")USNF_STRING("Breakout Flags")USNF_STRING("Breakout Flags")USNF_STRING("Breakout Flags")
 USNF_STRING("Breakout NB Flags")USNF_STRING("Breakout NB Flags")USNF_STRING("Breakout NB Flags")USNF_STRING("Breakout NB Flags")
 USNF_STRING("Breakout NS Flags")USNF_STRING("Breakout NS Flags")USNF_STRING("Breakout NS Flags")USNF_STRING("Breakout NS Flags")
 USNF_END_STRING_TABLE()USNF_END_STRING_TABLE()USNF_END_STRING_TABLE()USNF_END_STRING_TABLE()

 // Config Defs
 USNF_BEGIN_CONFIG_DEFUSNF_BEGIN_CONFIG_DEFUSNF_BEGIN_CONFIG_DEFUSNF_BEGIN_CONFIG_DEF()
 USNF_BOOL_CONFIG_ENTRYUSNF_BOOL_CONFIG_ENTRYUSNF_BOOL_CONFIG_ENTRYUSNF_BOOL_CONFIG_ENTRY("p.extractnames",
 "Extract Names", "Listen to NetBIOS Name Service exchanges
 (Response, Registration). Add all hostnames
 in these messages into the Unsniff Name
 Cache",
 true)

 USNF_ENUM_MULTISELECT_CONFIG_ENTRYUSNF_ENUM_MULTISELECT_CONFIG_ENTRYUSNF_ENUM_MULTISELECT_CONFIG_ENTRYUSNF_ENUM_MULTISELECT_CONFIG_ENTRY("p.breakouts",
 "Show Flags for", "A separate layout will appear for each
 Flags field selected",
 Options1,
 "0,1")
 USNF_END_CONFIG_DEFUSNF_END_CONFIG_DEFUSNF_END_CONFIG_DEFUSNF_END_CONFIG_DEF();
}

Handle Configuration Changes
In this method we save the user specified configuration parameters into member variables. We
can then adapt the plugin behavior as per the users wishes. We also demonstrate how to use the
multiselect parameter.

BOOLBOOLBOOLBOOL CMyPlugin::OnConfigChange()CMyPlugin::OnConfigChange()CMyPlugin::OnConfigChange()CMyPlugin::OnConfigChange()
{
 UserQueryConfigBoolUserQueryConfigBoolUserQueryConfigBoolUserQueryConfigBool("p.extractnames",&copt.fExtractNames);

 USHORT SelectedFlags[3];

 UserQueryConfigMultiChoiceUserQueryConfigMultiChoiceUserQueryConfigMultiChoiceUserQueryConfigMultiChoice(“p.breakouts”,3,SelectedFlags);
 For (int I=0;I<3;I++) {
 if (SelectedFlags[I]) {
 Cout << “Flagss “ << I << “Was selected by user” << Endl;
 }

 }

 return TRUE;
}

Unsniff Plugin Developer’s Guide | 101

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

6 XML Plugins

One of the most powerful features of the Unsniff Network Analyzer is the ability to leverage the
benefits of XML to quickly create protocol plugins.

There are two ways in which you can use XML:

1. Use XML to create the complete protocol plugin. This includes defining fields, identifying
the plugin, creating a packet description, working with access points, and handling
stream based protocols.

2. Use XML to define fields only. A C++ plugin is still responsible for pushing the fields on to

the field stack for a given packet and for all other functions such as streams, access
points. This option is a subset of option 1.

This section is organized into:

�� Using an XML Editor

�� Installing XML plugins

�� The Unsniff Protocol Plugin XML Specification

�� “Hello World” Step-by-Step

�� Plugin using both XML and C++

102 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

6.1 Using an XML Editor

XML Documents are notoriously hard to read with a plain text editor. This is especially true if you
want to load large documents for editing. We recommend that you use your favorite XML editor if
you plan on working on a decent size XML plugin.

We recommend the free XML Notepad from Microsoft. It is a very basic XML editor but it is stable
and above all free. If you have access to a full featured XML editor such as XML Spy, it is even
better !!

You can download XML Notepad from: http://msdn.microsoft.com/xmlnotepad

Unsniff Plugin Developer’s Guide | 103

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

6.2 Installing XML Plugins

An XML Plugin is nothing more than a simple XML document. An XML document can contain at
most one plugin. XML Plugins are installed using the Unsniff Application.

To install a XML plugin automatically simply copy it to the InstallPath\xmlplugs folder. These
plugins are discovered automatically and loaded.

To manually install a XML plugin follow these steps:
Assume that you have written an XML plugin for the BOOTP protocol in an XML file called
“BOOTPDemo_XML.xml”

�� Select Plugins � Install from the main application toolbar in Unsniff

�� In the “File Open” Dialog, select “Unsniff XML Plugins (*.xml)” from the drop down list,

this will allow you to select XML files.

�� The select plugin will be installed by Unsniff. If there is an error, please view the log
window using View � Log Window.

�� To check if the plugin has been installed successfully. Click on Plugins � Manage

Protocols. Scroll down to the protocol name and expand the row. You should see your
XML plugin. Note that an “X” icon distinguishes XML Plugins, native (C++) plugins are
shown with a ‘N’ icon. In the example below, our plugin has been installed and also
activated. The native plugin is now inactive, all BOOTP packets will be decoded using our
XML plugin.

104 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

6.3 Unsniff Protocol Plugin XML Specification

6.3.1 Top-Level Structure
The top-level structure of the XML protocol plugin document is shown below.

<?xml version=”1.0” encoding=”UTF-8” ?>

<USNFProtocol><USNFProtocol><USNFProtocol><USNFProtocol>

 . . . common items
 . . . such as vendor name, conformance, color,
 . . . root field

 <FieldDefs> <FieldDefs> <FieldDefs> <FieldDefs>
 . . . field definitions (mandatory)
 </Fie </Fie </Fie </FieldDefs>ldDefs>ldDefs>ldDefs>

 <DescriptionString> <DescriptionString> <DescriptionString> <DescriptionString>
 . . . how to construct a packet description
 </DescriptionString> </DescriptionString> </DescriptionString> </DescriptionString>

 <AccessPoints> <AccessPoints> <AccessPoints> <AccessPoints>
 . . . list of access points to attach this protocol
 </AccessPoints> </AccessPoints> </AccessPoints> </AccessPoints>

</USNFProtocol></USNFProtocol></USNFProtocol></USNFProtocol>

The entire XML document is specified in a block with a <USNFProtocol> tag. Apart from
<USNFProtocol>, the only mandatory tag is the top level <FieldDefs> tag. The Description String
and AccessPoints tags are optional.

Top Level Tags:

Tag Usage
<USNFProtocol> The base tag. This tag defines properties of the protocol. Some child

element may be left out – if you are only defining fields in this XML
document.

<FieldDefs> Define all your fields within this tag. At least one FieldDefs tag must be
present in the XML document. Additional FieldDefs may be present if you
are defining a Delay Load Group

<DescriptionString> This block defines how to format a packet description for a given packet15.
This block is optional.

<AccessPoints> This block defines the access point (e.g., host protocol, port) information
for this protocol. Alternately you can configure access points manually
using the Access Point Manager within Unsniff.
This block is optional

15 This is the same description that you constructed in the QuickParse() method in a C++ plugin.

Unsniff Plugin Developer’s Guide | 105

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

6.3.2 USNFProtocol
This is the top most tag in the XML document. This tag is used to:

�� Serve as a container for all other tags
�� Define common elements such as name, shortname, color, icon for the protocol

Attributes

Attribute name Whether Mandatory Description
<id> Mandatory A unique name for the protocol
<name> Optional Full name of the protocol. If not

specified <id> is used.
<shortname> Optional Short name of the protocol. If not

specified <id> is used
<protid> Mandatory The protocol GUID in registry format.

Use a predefined protocol ID from
the USNFProtocols.c file or generate
your own protocol ID for custom
protocols. See Section 4.fd.f.xd

Elements

Attribute name Whether Mandatory Description
<vendor> Optional Your company or organization

name.
<conformance> Optional Description of what RFCs, standards

documents, or specifications were
used for this protocol.

<color> Optional What color is used to represent this
protocol in the raw bytes view. Use
#RRGGBB hex format

<icon> Optional An icon file (*.ICO) which is used to
denote this protocol

<version> Optional Version number of this plugin XML.
The format is <Major>.<Minor>

<rootfield> Mandatory The name of the entry point field of
this protocol.

<FieldDefs> Mandatory This element contains a block of
field definitions

<DescriptionString> Optional This element specifies how to format
a descriptive name for a given
packet

<AccessPoints> Optional Contains access point information
<Defaults> Optional Specify default style for fields. If no

style is specified in the <FieldDef>
tag, then Unsniff will use the default
style.

106 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

Example:
The following excerpt is taken from the BOOTP protocol in the samples directory.

��Info
Note that we are using the protocol id for BOOTP from the USNFProtocols.h file
(UPID_BOOTP). This is because BOOTP happens to be a “well known” protocol. If
we had used a new GUID then this protocol would have been treated as a whole new
protocol (even though it has the same name BOOTP)

<UsnfProtocol id="BOOTP"
 shortname="BOOTP"
 name="Bootstrap protocol"
 protid="{CF2428E1-4843-48CF-B7DD-CCC9E5AE4BC1}">

 <vendor>Unsniff Plugin API Demo</vendor>
 <conformance>RFC 2131, RFC 2132</conformance>
 <color>#F0F000</color>
 <icon>mybootp.ico</icon>
 <version>1.0</version>
 <rootfield>BOOTPMessage</rootfield>

 <FieldDefs>

 - - - -
 </FieldDefs>

 <DescriptionString>

 - - - -
 </DescriptionString>

 <AccessPoints>

 - - - -
 </AccessPoints>

</UsnfProtocol>

Unsniff Plugin Developer’s Guide | 107

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

6.3.3 DescriptionString

The purpose of this tag is to:

�� Allow Unsniff to construct a meaningful text description of a packet. This is called the
packet description.

The goal is to quickly construct a packet description without requiring a full packet breakout. This
description appears in the packets sheet and is accessible via the Scripting interface. If this tag is
not present then the Protocol name is used as the description.

Attributes
This tag does not use any attributes.

Elements
Element name Whether Mandatory Description
<Format> Mandatory A string containing optional special

wildcards for parameters. If
specified, these wildcards will be
substituted with the actual parameter
values.

<Params> Optional If the <Format> tag uses parameter
wildcards. The <Params> section
must actually define those wildcards.

6.3.3.1 Params
The Params tag defines a set of parameters for use with the <DescriptionString> tag. This tag is
valid only as a child of the DescriptionString tag.

Attributes:

This tag does not use any attributes.

Elements
Element name Whether Mandatory Description
<Param> Mandatory A parameter for use with wildcard

substitution. Parameter number k will
be used to substitute wildcard $k

108 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

6.3.3.2 Param
The Param tag defines a single parameter. A parameter is nothing but a predefined field. The
corresponding field definition <FieldDef> must already be present in the XML document.
Parameters can also be fillers, which are dummy fields used to account for unimportant fields.

Attributes:

Attribute name Whether Mandatory Description
<ref> Optional

(Either ref or filler must
be present)

A reference to a pre-defined field.

The pre-defined field cannot be in a
DelayLoadGroup.

<filler> Optional
(Either ref or filler must
be present)

A count of number of BITS to fill.
Use fillers liberally to account for
unimportant fields for the purpose of
constructing a packet description

Elements
This tag does not define any elements

Example Description String:

When presented with a BOOTP packet we want to construct a description in the
following format “DHCPDISCOVER Request Txn Id (99380)”

In the following fragment $1 = Field “Option Type” $2 = Junk (Filler 24 bits) $3 = Field
“Transaction ID” and so forth.

- <DescriptionString>
 <format>$5 $1 Txn Id ($3)</format>

- <Params>
 <Param ref="Option Type" />
 <Param filler="24" />
 <Param ref="Transaction ID" />
 <Param filler="1872" />
 <Param ref="DHCP Message" />

 </Params>
 </DescriptionString>

Woot! Your XML plugin can construct a flexible packet description. Admittedly this is not
as powerful as a C++ plugin; but it sufficient for many protocols.
Sample shown below

Unsniff Plugin Developer’s Guide | 109

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

6.3.4 AccessPoints

The purpose of this tag is to:

�� Wire up your protocol into the access point framework in Unsniff.

If the AccessPoints tag is not present. You will have to manually wire up your protocol
using the Access Point Manager in Unsniff.

Attributes
This tag does not use any attributes.

Elements
Element name Whether Mandatory Description
<AccessPoint> Mandatory Define a single access point. You

can have as many of these tags as
you want.

6.3.4.1 AccessPoint
The AccessPoint tag defines a single access point. This tag is valid only as child element of the
<AccessPoints> tag.

Attributes:

Attribute name Whether Mandatory Description
<hostid> Mandatory Protocol GUID of the host protocol in

registry format. Consult the
USNFProtocols.c file for a list of
standard protocol GUIDs.

Example: If you are writing a plugin
for a protocol on top of UDP. Specify
the protocol GUID of UDP here.
{14D7AB53-CC51-47e9-8814-
9C06AAE60189}

<apvalue> Mandatory Access point value. This depends on
the host protocol. For TCP and UDP
this represents the Port number. For
Ethernet this value is the EtherType,
etc.

Elements
This tag does not define any elements

110 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

Example:

Consider the following example of the SNMP protocol. This protocol will ride by default on UDP
ports 161 and 162 and TCP ports 161 and port 162

- <AccessPoints>
 <AccessPoint hostid="{14D7AB53-CC51-47e9-8814-

9C06AAE60189}" apvalue="161" />
 <AccessPoint hostid="{14D7AB53-CC51-47e9-8814-

9C06AAE60189}" apvalue="162" />

 <AccessPoint hostid="{77E462AB-2E42-42ec-9A58-

C1A6821D6B31} " apvalue="161" />
 <AccessPoint hostid="{77E462AB-2E42-42ec-9A58-

C1A6821D6B31} " apvalue="162" />

 </AccessPoints>

6.3.5 Defaults
The Defaults section is used to assign global default values for elements. At present the only
default element supported is the <styles> element

Attributes:
This tag does not use any attributes

Elements:
Element name Whether Mandatory Description
<styles> Mandatory Specify default styles for fields. This

style is assumed to be present even
if not explicitly specified in the
<FieldDef> element.

Usage Notes:

Use the Defaults section if a majority of fields in your protocol have certain properties that would
be a pain to specify on a field-by-field basis. An example usage scenario.

�� If all strings in your protocol are Unicode. You can specify <styles> Unicode </styles> in
the defaults section. This way you can avoid repeating the same style for all fields. If a
certain field is not Unicode, you can negate the style using <style > ~unicode </field> in
the <FieldDef> element.

UDP 161,162

TCP 161,162

Unsniff Plugin Developer’s Guide | 111

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

6.3.6 FieldDefs
The purpose of this tag is to:

�� Serve as a container individual fields using the <FieldDef> tag (note that this singular)
�� Support Delay Loading

Attributes
Attribute name Whether Mandatory Description
<delayloadgroup> Optional Used for Delay Loading.

You can use this tag to specify that
all the fields defined in this block
belong to a delay load group by the
name present in the tag.

This attribute can only appear when
the parent of the corresponding
<FieldDefs> tag is the
<USNFProtocols> tag. In other
words, only top-level FieldDefs can
have use the <delayloadgroup>
attribute.

Elements
Element name Whether Mandatory Description
<FieldDef> Mandatory Defines an individual field.

Examples

 <FieldDefs>
 <FieldDef>

- Field 1 definition
- here
 </FieldDef>

 <FieldDef>
- Nested FieldDef

<FieldDefs>
 - Nested fields
 </FieldDefs>

 </FieldDef>

 </FieldDefs>

<UsnfProtocol>

<FieldDefs>
 - - all main fields go here
</FieldDefs>

<FieldDefs delayloadgroup =
 “Mgmt Frames”>
 - - all fields in delay load
 - - group go here
</FieldDefs>

FieldDefs in action (including nested fields) DelayLoadGroup for “Mgmt Frames”

112 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

6.3.7 FieldDef
This is the key tag that appears the maximum number of times in most Unsniff XML documents.
A good understanding of using this tag will get you 3/4ths of the way to understanding this
specification.

The purpose of this tag is to:

�� Define a protocol field

Attributes:
Attribute name Whether Mandatory Description
<name> Mandatory for non-ref

fields
The full field name.

<shortname> Optional A short form of the full field name.
This will be used by Unsniff if there
are any space constraints while
displaying the full name. Try to keep
the short name < 10 characters long

<id> Optional All fields are expected to have a
unique field name. However in many
cases it is not possible to adhere to
this rule. In those cases, use the id
tag to specify a unique id for the field

<ref> Optional Unsniff allows you to rubber-stamp
the field definitions of an already
defined field.

Use this tag to copy all properties of
this field from an existing field.

Elements

Element name Whether Mandatory Description
<fieldtype> Mandatory for non-ref

fields
The field type can be one of the
Unsniff built in field types or a user-
defined field type.

<sizebits> Optional The size of the field in bits. The
minimum fieldsize is 4 bits for a
standalone field and 1 bit for a
member of a flags field.

<styles> Optional Field styles control how fields are
interpreted and presented to the
user.

<sizeexpr> Optional An expression using variables that
evaluates to the size of the field in
bits.

<reps> Optional An expression using variables that
yields the number of repetitions of
the field

<choiceexpr> Mandatory for Choice
fields

The expression is evaluated to yield
a number or a string. Based on this
result – one of the candidate
members of the choice field is

Unsniff Plugin Developer’s Guide | 113

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

activated.
<choiceval> Mandatory for

members of Choice
fields

This is a number attached to a
candidate member of a Choice field.
The <choiceval> is used to match
and activate this field among all the
other candidates

<choicevalstring> Mandatory for
members of Choice
fields using a string
choice (eg. OID)

This is a string attached to a
candidate member of a Choice field.

<condition> Optional This is a logical expression that
evaluates to true/false. If the
expression evaluates to true – then
this field is active, if false – this field
is treated as a NO-OP.

<variable> Optional Attach a variable to this field. The
variable name is a string containing
no spaces or special characters. The
first letter of the variable name must
be alphanumeric.

Do not prefix the variable name with
a $ sign.

<protid> Mandatory for external
fields

For external fields, this protid
indicates which protocol will help us
decode this field.

<helptext> Optional The online field level bubble help
text. This can span several lines.
You can also include some HTML
tags in the text if you wish

<asntag> Optional The user defined ASN tag attached
to the field. Examples are:
UNIVERSAL: 4, APPLICATION 10,
etc.

<asntagexplicit> Optional The explicit ASN Tag attached to
this field.

<asntagimplicit> Optional The implicit ASN Tag attached to
this field

<BitList> Only applicable to
fields of type
ASNBERBit

Specifies a bit list. This is a
sequence of <bit> tags which specify
the position of each bit in the ASN.1
Bitstring

<EnumList> Mandatory for enum
fields

Contains a list of name , value pairs
which constitute this enum. You can
also define a long name for your
enums.

<OIDEnumList> Optional only for
ASNBER fields

Contains a translation of OIDs to
human readable strings. Use for
ASN.1 based plugins only.

<FieldDefs> Optional Child fields of this field. You must
use this tag to define child fields of:

114 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

�� Records
�� Flags
�� Choices
�� ASN Seq/Set/Choice

<recorddisplayformat> Only valid for record
fields or
ASNBERSequence
fields

Format a description of the record
field based on the values of child
fields.

See Sec. 4.5.7 for details of
formatting record fields.

For example:

“ Type = $1, length = $2,
value = $3”

Where $1,$2,$3 are the first
second and third child fields
of the record.

Unsniff Plugin Developer’s Guide | 115

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

6.3.7.1 The ID attribute

The ID attribute assigns a unique ID to the field. Use this attribute if the name cannot be made
unique. Take the example of the SMB protocol: there is a field called “Flags” which is defined in
many commands including the header and inside the TREE_CONNECT command. Using the ID
attribute we can assign a unique ID to each flags field without changing the name of the field.

<FieldDef name="Flags" id="Main.Flags">
 <fieldtype>Flags</fieldtype>
 <styles>filter,sublayout</styles>
 <helptext>Flags and Flags2 contain bits which, . . .

 - - - - -

 <FieldDef name="Flags" id="TreeConnect.Flags">

 <fieldtype>Numeric</fieldtype>
 <sizebits>16</sizebits>
 <helptext>Addl info (bit0 set = disconnect Tid)</helptext>

 </FieldDef>

Having defined the unique IDs, it is easy to push fields on to the field stack.

FieldStm << “Header.Flags”; // the flags in the main header

FieldStm << “TreeConnect.Flags”; // in the tree connect command

6.3.7.2 Ref fields

Use the ref attribute if you want to copy the properties of an already defined field. This idiom Is
very useful if you have a lot of identical fields that just differ by their name . Using the ref attribute
helps you cut down on unnecessary field definitions.

Assume that we have a complex bit field named Capabilities. This field appears in many records.
Instead of defining the field again in each record, you can define it once. Then you can just create
a <ref > to represent this field inside all the records that use it.

 <FieldDef name="Capabilities">
 <fieldtype>Flags</fieldtype>
 <styles>sublayout</styles>
 <sizebits>32</sizebits>

 <FieldDefs>
- <FieldDef name="CAP_EXTENDED_SECURITY"
- - - Complex field definitions of the Capabilities flag

116 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

 You can just create a ref to the “Capabilities” field in the SessionSetup record as shown below:

- <FieldDef name="SESSION_SETUP_ANDX NT-LM 0.12 Req">
 <fieldtype>Record</fieldtype>

- <FieldDefs>
+ <FieldDef name="WordCount" shortname="Wcnt">
+ <FieldDef name="AndXCommand" + <FieldDef

name="AndXReserved"
 - - - add other fields of the record here
 <FieldDef ref="Capabilities/>"

Since the capabilities field is used in many records, we just saved ourselves a lot of duplicate and
difficult to maintain elements.

6.3.7.3 FieldType

The field type element specifies the type of field. The field type is case insensitive – so lower
case, upper case, and mixed case are accepted by Unsniff.

Valid field types are:
Element name Explanation
"ASNBER"
"ASNBERChoice"
"ASNBERGroup"
"ASNBERHeader"
"ASNBERSequence"
"ASNBERSet"
“ASNBERBit”
"Binary"
"Choice"
"Enum"
"External"
"Flags"
"GUID"
"IPAddress"
"IPv6Address"
"MACAddress"
"Numeric"
"Numeric64"
"Record"
"String"
“Pad”

Denotes the built-in
field type for this field

Any name starting with
a % sign.

A user defined field
type.

See Chapter 4 : Fields for more information about Fields.

Unsniff Plugin Developer’s Guide | 117

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

6.3.7.4 Styles

The <styles> element is used to attach one or more styles to the field.

�� You can combine styles by separating them with commas
�� Styles are case insensitive
�� You can clear a style using the unary ‘~’ symbol16
�� The styles specified here are combined with the styles in the top level <Defaults> section

of the document.

The following styles are valid:

Style name Explanation
"plain"
"filter"
"filterdisplaystring"
"label"
"sublayout"
"novisual"
"nodetail"
"novalue"
"protocolitem"
"hostorder"
"unicode"
"showbitflags"
"align"
"reverse"
"fill"
"hex"
"hostorder"
"conditional"
"optional"
"hidden"
"compressed-visual"
“signed”

The style to be
attached to the field.
If a specified style is
not applicable to a
particular field type, it
is silently ignored.

Usage Notes:

Some examples:

�� The LANMAN field is a UNICODE string aligned natively. The native alignment of a
UNICODE string is understood by Unsniff to be 16 bits. Extra padding is automatically
added to align it if necessary. We also set the label and Unicode style here.

- <FieldDef name="NativeLanMan">

 <fieldtype>String</fieldtype>

16 You can also use the ‘!’ symbol to specifically negate a style

118 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

 <styles>unicode,label,align</styles>
 <helptext>Servers native LAN Manager type in

unicode</helptext>

�� Here we set the styles for a numeric field. We will clear the hostorder style, which has

been set in the top-level Defaults section.
- <FieldDef name="TxnId">

 <fieldtype>Numeric</fieldtype>
 <styles>label, ~hostorder</styles>

6.3.7.5 Expressions

As you have seen in Section 4.xx.x. variables are used to save the value of a field that has
already been pushed onto the field stack. The Unsniff API allows you to use variables in the form
of expressions. There are two types of expressions:

�� Integer Mathematical Expression (used by <sizeexpr> , <reps> , <choiceexpr> tags
�� Logical expressions (used by <condition> tag)

Math Expressions

Consists of a string of variables and operators. The operators allowed are: “ + “ + “ + “ + ---- * / () “ * / () “ * / () “ * / () “
The precedence rules for these expressions are the same as any programming language. You
can use any number of variables to form these expressions.

Examples:

�� The size of field SecKey is 4 x TotalDataLength – 2 x OptionalWordCount

 <FieldDef name="SecKey">

 <fieldtype>binary</fieldtype>
 <sizeexpr> 4 * $TotalDataLength – 2 * $OptWordCount </sizeexpr>

�� The record Address Record will repeat TotalDataLength – HeaderLength / 16 times.

 <FieldDef name="Address Record">

<fieldtype>record</fieldtype>
 <reps> ($TotalDataLength – $HeaderLength) /16 </reps>

 <FieldDefs>
<FieldDef>
 // .. members of Address Record

Logical Expressions

Variables and Logical Operators are used to create this expression.
 The operators allowed are: “ && || == != ~ () > < >= <= “. “ && || == != ~ () > < >= <= “. “ && || == != ~ () > < >= <= “. “ && || == != ~ () > < >= <= “. The precedence rules for
these expressions are the same as any programming language. You can use any number of
variables to form these expressions.

Unsniff Plugin Developer’s Guide | 119

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

Examples:

�� The 128 bit field AuthBlock is present only when $AuthType is 1 or 3

 <FieldDef name="AuthBlock">

 <fieldtype>binary</fieldtype>
 <sizebits>128</sizebits>
 <condition>
 $AuthType == 1 || $AuthType == 3
 </condition>

6.3.7.6 EnumList
This tag is valid only when the fieldtype is “enum” or “ASNBER”. For all other field types, the
EnumList tag is ignored and a warning is generated.

The EnumList tag is used to:

�� Define a block of enumerated entries and attach it to a field

Attributes:
This tag does not define any attributes

Elements
Element name Whether Mandatory Description
<enum> Mandatory Define a single enum entry. The

<EnumList> tag is actually just a
collection of <enum> tags

The <Enum> tag
The Enum tag is used to define a single enumerated entry. The Enum tag is valid only within an
EnumList tag.

Attributes:
Attribute name Whether Mandatory Description
<name> Mandatory The text name of the enumerated

entry.

<longname> Optional An optional descriptive name of the
enumerated entry

<value> Mandatory The integer corresponding to this
entry. All <enum> tags within an
<EnumList> must have distinct
values.

You can specify the value in hex or
decimal

<oid> Optional only when
child of OIDEnumLIst

A OID in dotted decimal format.
Eg. “1.3.6.1.2.1.1.1”

120 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

Elements
This tag does not define any elements

Example <EnumList>

In the example, we define an enumerated field called NtStatus. You can see that the
value can be in hex or decimal and that the longname attribute is optional.

- <FieldDef name="NtStatus">
 <fieldtype>Enum</fieldtype>
 <sizebits>32</sizebits>
 <styles>protocolitem,label</styles>

- <EnumList>

 <enum value="0x00000000"
 name="SUCCESS"
 longname="STATUS_SUCCESS"/>

 <enum value="1"

 name="STATUS_WAIT_1" />

 - - - // define all other enum values here

6.3.7.7 OIDEnumList
This tag is valid only when the fieldtype is “ASNBER”. For all other field types, the OIDEnumList
tag is ignored and a warning is generated.

The OIDEnumList tag is used to:

�� Map OID (Object Identifiers) to human readable names

Attributes:
This tag does not define any attributes

Elements
Element name Whether Mandatory Description
<enum> Mandatory Define a single enum entry. The

<EnumList> tag is actually just a
collection of <enum> tags

The <Enum> tag
The Enum tag is used to define a single enumerated entry. The oid attribute of the <enum> tag is
used when it is a child element of OIDEnumList See previous section on <EnumList> for details
about the enum tag.

Unsniff Plugin Developer’s Guide | 121

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

6.3.7.8 Sub Fields using FieldDefs

Using FieldDefs tag as an element of FieldDef can create nested fields. This technique is used to
create records, flags, choice, ASN structures, etc.

All the rules of Section 6.3.6 (FieldDefs tag) apply to its usage as a child of a FieldDef. Consider
the example shown below. The Field Option 3 contains an auto-repeat sub field called routers.

The protocol:

XML fragment showing nested fields:

- <FieldDef name="Option 3 (Routers)" id="Option_3">
 <fieldtype>record</fieldtype>

- <FieldDefs>
 <FieldDef ref="Option" />
 <FieldDef ref="Length" />

- <FieldDef name="Routers">
 <fieldtype>record</fieldtype>

- <FieldDefs>
- <FieldDef ref="Router Address">

 <reps>$OptionLength / 4</reps>
 <helptext>- - - </helptext>

 </FieldDef>
 </FieldDefs> // end of Routers record

 </FieldDef> // end of Routers field
 </FieldDefs> // end of Option 3 (Routers) record

 </FieldDef> // end of Option 3 (Routers) field

122 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

7 Advanced Plugins

In addition to protocol plugins, the Unsniff Network Analyzer also supports other types of plugins.
These plugins are written in C++ and require a decent amount of COM knowledge to get started.
They make Unsniff even more extensible and customizable. You can write entire applications on
top of the Unsniff platform.

7.1 Types

Type Purpose
Eavesdroppers Eavesdrop plugins can subscribe to a single or all

protocols. The Unsniff framework will callback each
registered eavesdrop plugin as packets are processed.

This is the way you can hook into the Unsniff packet
processing engine.

Name Resolvers It is excruciatingly painful for a human network analysis
expert to spend time looking at strings that make sense
only to machines. You can write name resolvers for any
entity that you think will be useful to you.

For example: A name resolver for “Station ID” might
convert a string like “NJ7784.883:99102” to something
like “NJ Walmart – WAN–9 Port 102” . This conversion
can be done by looking up a database or file or any other
scheme. It is up to you.
Other examples are:

• MAC address to OUI + Address
• SNMP OID to name
• 802.11 BSSID to test network name

Custom User Objects User Objects are high level entities that are of interest to
the network analysis expert. Unsniff allows you to define
your own user object types in addition to the standard
user object types (such as image, HTML, file, audio). You
can then attach a custom renderer to display this object.
User Object will prove to be invaluable in real life network
analysis. Some potential types:

• “Config File” : Boot files via TFTP to remote
systems. DSL or Cable providers can check the
file(s) that were actually sent. This is conclusive
proof.

• “Streaming Audio” : You can extract the audio
stream and play it back to monitor it for quality
and content

• “Chat Session” : Security personnel and law
enforcement may want to extract chat sessions
as user objects

• “Trades” : Developers and testers of a stock
broker trading software may want to extract the
actual data sent to exchanges for debugging
purposes

Unsniff Plugin Developer’s Guide | 123

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

Custom User Object Renderers You can control how a particular user object is rendered

in the User Objects Sheet in Unsniff. You may wish to
show the chat session in a HTML window or plain text.
You may wish to format the text in a particular way for
display. Using custom user object renderers.

• You can render your user object as you wish.
You will be given a HDC to paint on

• You can play your user object if it supports that
kind of activity

• You can save you user object in a particular
format

If you do not provide a renderer, Unsniff will still be able
to display the user object in the sheet and save it.

User Interface Plugins You can integrate your plugin completely into the Unsniff
user interface. You can add menu items, toolbars,
buttons, and dialogs into Unsniff. Using a simple callback
model you will be notified when a toolbar button or menu
item is selected. You can then display your user interface
items.

Custom Sheets Custom Sheets are full blown ActiveX controls that
appear as a separate sheet in the Unsniff capture
window. Custom Sheets are the “top of the heap” among
all types of plugins. You can use custom sheets to
develop your own full featured applications on top of the
Unsniff framework.
Some examples17:

• VOIP call monitor. Show a panel with currently
active calls, finished calls, calls experiencing high
jitter. This panel has a sub panel with an
embedded media player / signal level meter.

• Wireless Manager : Show a panel with a snazzy
graphical display of the channels. Show signal
levels on each channel. Show active networks in
a separate channel.

• Statistics : Show station wise traffic. You can
duplicate the matrix displays found on some old
protocol analyzers or develop your own 3D
visualizations of traffic

A Custom Sheet can also be an Eavesdrop plugin. This
will enable your cool network application to seamlessly
plugin into (1) the user interface and (2) the packet
processing engine

17 None of these sheets actually exist ! These are just ideas for network analysis experts who can
also code. You can use your imagination, let us know via our message boards of any cool sheets
you are developing.

124 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

7.2 Development Environment

All the advanced plugins are COM components that implement one (or more) specific interfaces.
We strongly recommend that you write plugins using Microsoft Visual C++ and Active
Template Library (ATL). You could also write some plugins in VisualBasic, C# , VB.NET or any
other language supporting COM early binding. At this point we cannot support plugins written in
other languages. All plugins must be housed in a DLL project.

��Info
Unsniff does not provide the Unsniff ATL COM Plugin Object Wizard for
advanced plugins. You have to use the standard ATL COM Object Wizard.
You can still use the Unsniff Plugin APP Wizard to create your DLL Project.

��Tip
The best way to get started is to copy a similar sample plugin from the
Unsniff API “samples” directory. Note that you still have to use the ATL
COM Object wizard to generate the correct GUIDs and registry scripts for
your plugin. You can then use the sample plugin to fill in the relevant
sections.

7.2.1 View installed plugins

• All advanced plugins need to be registered with Windows. You can use the
“Plugins”�”Install” menu item from the main application menu to install them

• You can view installed plugins using the “Plugins” � “Plugin List” from the main

application toolbar. For more information about the Plugin List dialog, press F1 while the
dialog is open.

7.2.2 COM Tips

• Use FinalConstruct and FinalRelease to perform your intiaiization (see the samples)

• Use ATLTRACE statements to insert debugging text in your code

• Use CComBSTR to convert normal strings to the BSTR format required by COM

• Use W2A to convert BSTR to normal strings

Unsniff Plugin Developer’s Guide | 125

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

7.3 Eavesdroppers

Samples located in folder “samples/plugins/eaves_demo “

Eavesdrop plugins implement the IUSNFEavesdrop Interface.

The IDL definition of this interface
/*
 * IUSNFEavesdrop - Eavesdropper
 * Generic eavesdropping interface
 * Allows a plugin to listen to interesting events happening
 * inside the packet processing engine of Unsniff.
 */
 [
 object,
 uuid(8D063005-6959-4b4e-996F-F3A854E8E929),
 dual,
 helpstring("IUSNFEavesdrop Interface"),
 pointer_default(unique)
]
 interface IUSNFEavesdrop: IDispatch
 {
 [id(1), ..] HRESULT AttachSite([in] IUSNFContainer * pCTR);
 [id(2), ..] HRESULT DetachSite();
 [id(3), ..] HRESULT GetEavesdropTypes([out, retval] DWORD *pVal);
 [id(4), ..] HRESULT GetEavesdropProtocolID([out] GUID * pProtID);
 [id(5), ..] HRESULT NewLayerPacket([in] IUSNFProtData * pLayerData);
 };

Methods
Name Parameters Purpose
AttachSite IUSNFContainer This plugin has been attached to the Unsniff

application.
• save this interface pointer if you want

to avail of services from the
container later

• perform any initialization
DetachSite None You plugin is no longer attached to the

application
GetEavesdropTypes DWORD What types of eavesdropper are you ?

Currently this value returned is ignored. You
can just return S_OK from this method

GetEavesdropProtocolID GUID Return the GUID of the protocol you are
interested in.

• return GUID_NULL if you want to
eavesdrop all packets at the lowest
layer

NewLayerPacket IUSNFProtData This is the main callback method from the
application. A new packet was received, the
interface pointer (IUSNFProtData) contains
the data at the layer you requested

See Appendix X for details about other interfaces

126 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

7.4 Name Resolvers

Samples located in folder “samples/plugins/resolver_demo “

Resolver Target

Name resolvers are used to convert a random collection of bytes to a meaningful human readable
string. Name resolution is triggered when :

• A resolver is attached to a field using UserAttachResolver(..ResolverTargetGUID)
• A resolver is attached via the <resolveid> XML tag

The resolver target is the entity that is being resolved to a human readable string. Each resolver
target must have a unique GUID. This is known as the “Resolver Target GUID”.You must first
determine the Target GUID for your resolver. Some resolver targets are pre-defined in Unsniff
(see the file USNFProtocols.c for a list). If you cannot find them there you need to define your
own resolver target.

Built in Resolver Targets from USNFProtocols.c

// Predefined RESOLVER TARGET IDs
// GUIDs (e.g.. SNMP OID = {21DDAF85-FCA6-4e42-B593-D221A3633A6E})
DEFINE_GUID(URSV_IPADDRESS,…); // IP Address
DEFINE_GUID(URSV_IP6ADDRESS,…); // Ipv6 Address
DEFINE_GUID(URSV_MACADDRESS,…); // MAC Address
DEFINE_GUID(URSV_OSPFAREA_NAME,…); // OSPF Area Name
DEFINE_GUID(URSV_SNMPOID,…); // SNMP OID

Name resolvers plugins implement the IUSNFCustomResolver interface. If you are defining
your own resolver target then you must also implement the IUSNFCustomResolverTarget
interface

The IDL definitions

IUSNFCustomResolver
/*
 * IUSNFCustomResolver - Custom Resolver
 * Methods to handle name resolution of user defined entities
 */
[

object,
uuid(4C446404-A08C-4e02-A04B-BF08EE018879),
dual,
helpstring("IUSNFCustomResolver Interface"),
pointer_default(unique)

]
interface IUSNFCustomResolver: IDispatch
{
 [id(1),..] HRESULT AttachSite([in] IUSNFContainer * pCTR);
 [propget, id(2),..] HRESULT TargetID([out, retval] GUID *pVal);
 [id(3),..] HRESULT DoResolve([in] short IdSize,
 [in, size_is(IdSize)] BYTE * IdBytes,
 [out,retval] BSTR * pResolvedName);
 [id(4),..] HRESULT DoResolveString([in] BSTR ToBeResolved,
 [out,retval] BSTR * pResolvedName);
};

Unsniff Plugin Developer’s Guide | 127

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

Name Parameters Purpose
AttachSite IUSNFContainer This plugin has been attached to the Unsniff

application.
• save this interface pointer if you want

to avail of services from the
container later

• perform any initialization
TargetID
get_TargetID

GUID What is your resolver target ID ? You can
specify a built in target ID a custom resolver
target ID.

DoResolve Size (long)
Bytes (BYTE*)
BSTR

A binary array of length IdSize is given to you
in IdBytes. You are expected to interpret this
binary array and return a string representing
the human readable resolved name.

Example: If you are resolving IP Addresses
the IdBytes array wiil contain 4 bytes
representing the address and IdSize = 4

DoResolveString BSTR (in)
BSTR

This is same in functionality as DoResolve
but gives you a text version of the raw name.
You can interpret it and return a human
readable name.

Example: If you are resolving IP Addresses
the ToBeResolved string wiill contain the
string ip address (eg “192.168.87.22”)

You do not have to support both the DoResolve and DoResolveString methods. Unsniff will
automatically call DoResolveString if the DoResolve method returns E_NOTIMPL or another
error.

IUSNFCustomResolverTarget
/*
 * IUSNFCustomResolverTarget – A custom resolver target
 * For example – A Site ID, Station ID, BSS Name, etc
 */
interface IUSNFCustomResolverTarget: IUnknown
{
 [helpstring("..")] HRESULT GetTargetIID([out] GUID * pIid);
 [helpstring("..")] HRESULT GetTargetName([out] BSTR * pVal);
 [helpstring("..")] HRESULT GetTargetDescription([out] BSTR * pVal);
};

Methods
Name Parameters Purpose
GetTargetIID GUID A unique GUID for this resolver target. You

can generate a unique GUID using the
GUIDGEN tool.

GetTargetName BSTR A short name for the resolver target.
Example : “Station ID”

GetTargetDescription BSTR A description of the resolver target.

128 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

7.5 Custom User Object

A custom user object plugins implements the IUSNFCustomUserObject Interface. Each type of
user object must have a unique GUID.

The IDL definition of this interface
/*
 * IUSNFCustomUserObject - A custom user object
 *
 */
[
 object,
 uuid(95B58998-D224-4fdf-85C6-5E7BB631DED2),
 helpstring("IUSNFCustomUserObject Interface"),
 pointer_default(unique),
 local
]
interface IUSNFCustomUserObject : IUnknown
{
 [helpstring("..")] HRESULT GetUserObjectIID([out] GUID * pIid);
 [helpstring("..")] HRESULT GetShortName([out] BSTR * pVal);
 [helpstring("..")] HRESULT GetLongName([out] BSTR * pVal);
 [helpstring("..")] HRESULT GetDescription([out] BSTR * pVal);
};

Methods
Name Parameters Purpose
GetUserObjectIID GUID The unique GUID assigned to this type of user

object.
GetShortName BSTR The user object name short
GetLongName BSTR A longer name for the user object type
GetDescription BSTR A detailed description of the user object type.

A custom user object plugins implements the IUSNFCustomUserObject Interface. Each type of
user object must have a unique GUID.

Unsniff Plugin Developer’s Guide | 129

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

7.6 Custom User Object Renderer

As you saw in the previous section, you can define your own types of user objects (such as
orders, transactions, video, etc). That provides you basic features like displaying and saving the
user object to a file. If you want to do more with user objects, you have to create your own “user
object renderers ”. A renderer gives you complete control of how your user object is represented
in Unsniff to the user. A custom user object renderer must implement the
IUSNFCustomUserObjectRenderer interface.

The IDL definition of this interface
/*
 * IUSNFUserObjectRenderer - A plugin that can render a user object
 * Examples of user objects are : ImageViewer, Chat Viewer, Webbrowser etc.
 */
[

object,
uuid(D510F5B5-CCEF-4770-A3C0-12513EAAC2AD),
helpstring("IUSNFUserObjectRenderer Interface"),
pointer_default(unique),
local

]
interface IUSNFUserObjectRenderer : IUnknown
{

[..] HRESULT CanHandle([in] REFIID Oiid, [out] VARIANT_BOOL * pVal);
[..] HRESULT Render([in] IUSNFUserObject * pVal,
 [in] RECT * pRectClient,
 [out] RECT * pRectImage,
 [in] HDC hDC);
[..] HRESULT GetObjectID([out] GUID * pVal);
[..] HRESULT Play([in] IUSNFUserObject * pVal);
[..] HRESULT Transform([in] IUSNFUserObject * pVal,
 [out] IStream ** ppTransformedStream);
[..] HRESULT SaveToFile([in] BSTR FileName,
 [in] IUSNFUserObject * pSaveThis);

};

Methods

Name Parameters Purpose
CanHandle GUID Can you render this type of user object. The GUID

identifies the user object type. Return
VARIANT_TRUE or VARIANT_FALSE depending
on your capabilities.

Render UserObject
RectClient
RectImage [out]
HDC

Render the user object passed to you. Use this
method if it is possible to paint your user object to a
DC. After you are done – return the dimensions of
what you drew in the RectImage parameter. The
HDC denotes the graphics context on which you
must render.

Return E_NOTIMPL if this method is not applicable

GetObjectID GUID What type of user object can you render ? Return
the GUID of the user object type here.

130 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

Play UserObject Playback the user object. Implement this method if

it makes sense to the type of user object you want
to render. For example : It would make sense to
play a “sound” but not to “play” a image.

Return E_NOTIMPL if this method is not applicable

Transform UserObject
Istream

Apply a custom transformation on the user object.
For example: you canuse this method to convert
‘audio’ userobjects to use linear PCM encoding.

Return E_NOTIMPL if you do not have a
transformation

SaveToFile UserObject
FileName

This method gives you a chance to save the user
object is a custom format to a file. If you do not
implement this method Unsniff will fill in a default
SaveToFile. The default SaveToFile will save the
raw contents of the user object to a file. You can
use this method to save it your way.
For example: You can save raw streaming audio to
a WAV file or save a binary order to an XML file.

Return E_NOTIMPL if you are quite happy with the
default SaveToFile mechanism

Unsniff Plugin Developer’s Guide | 131

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

7.7 User Interface Plugins

Samples located in folder “samples/plugins/ui_demo “

At some point your plugin is going to require some user interface elements. You may want to
incorporate a dialog , a menu item or toolbar to allow the user to interact directly with your plugin.
Unsniff allows a third party developer to directly integrate their application with the Unsniff user
interface. You can merge your menu items and toolbars into Unsniff.

To write user interface plugins, you need to understand the concept of UI Host Site and the UI
Customizer.

• The UI Host Site represents the Unsniff application. This application exposes a COM
interface IUSNFUIHostSite. This interface has methods that let anyone add user
interface elements.

• The UI Customizer represents your UI plugin. You will have to implement the
IUSNFUICustomizer interface. You will be given a chance to add your user interface
elements to the host site. The host site will then call you back whenever those user
interface elements are activated.

Examples:

A plugin has added two menu items to the
Unsniff menu

A plugin has added a toolbar to the Unsniff
main toolbar

IUSNFUIHostSite IDL Definitions

��Info
You do not have to implement the IUSNFUIHostSite interface. This
interface is implemented by the Unsniff main application. You must call
methods on this interface in order to add your user interface elements to
Unsniff

/*
 * IUSNFUIHostSite - hosting site (i.e) main application
 */
 [
 object,
 uuid(4F15361F-3131-45f0-9DDE-41B361C24200),
 helpstring("IUSNFUIHostSite Interface"),
 pointer_default(unique),
 dual
]

132 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

 interface IUSNFUIHostSite : IDispatch
 {
 [id(1), ..] HRESULT AddAppMenuItem([in] BSTR bsLocationString,
 [in] BSTR bsFlyBy,
 [in] BSTR bsTooltip,
 [in] int MyResId);
 [id(2), ..] HRESULT AddAppSeparator([in] BSTR bsLocationString);
 [id(5), ..] HRESULT AddToolbar([in] UICONTEXT_T Ctx,
 [in] HBITMAP hBitmap,
 [in] int nButtonCount,
 [out] ULONG * pToolbarID);
 [id(6), ..] HRESULT AddToolbarButton([in] ULONG ToolbarID,
 [in] int Pos,
 [in] BSTR bsTooltip,
 [in] BSTR bsFlyBy,
 [in] int MyResId);
 [id(7), ..] HRESULT ConfigFolderPath([out, retval] BSTR *pVal);
 [id(8), ..] HRESULT PrintLogMessage([in] API_LOG_MESSAGE_LEVEL_T eLevel,
 [in] BSTR msg);
 [id(9), ..] HRESULT ActivateUI([in] BSTR bsVal);
 [id(10), ..] HRESULT PrintOutputMessage([in] BSTR bsVal);
 [id(11), propget, ..]HRESULT InstallFolderPath([out, retval] BSTR *pVal);
 [id(12), ..] HRESULT GetActiveContainer([out,retval]IUSNFContainer **p);
 };

Methods

Name Parameters Purpose
AddAppMenuItem LocationString

Flyby
Tooltip
Resource ID

Add a menu item to the location indicated by the
bsLocationString parameter.

Location Strings are simply a concatenation of
where you want to place your menu item.
Location strings start with an ‘&’ character.
Example: To place a menu item (Lookup OID)
under Tools -> SNMP the location string is :
"&Tools\\SNMP\\Lookup OID"18. If some
items in the location string do not exist, Unsniff
will automatically create sub-menu items for the
missing items.

Flyby: Flyby text
Tooltip: Tooltip text
Resource ID: You must assign a resource ID to
each item. When this item is selected you will be
notified with this resource ID.

AddAppSeparator LocationString Add a separator at the Location String.
AddToolbar UIContext

Bitmap
Num Buttons
Toolbar ID [out]

Add a toolbar to Unsniff.
UIContext: Specify UICTX_APPLICATION
Bitmap: A strip of 16x16 images.
Num Buttons : Maximum number of buttons on
the toolbar
Handle(ToolbarID): The UI Host site will create
the toolbar and return a handle. Save this handle,
you must use this handle to issue
AddToolbarButton commands.

18 Note the double backslashes “\\”. The first backslash is just an escape character for the next
one. Location strings are simply menu items separated backslashes.

Unsniff Plugin Developer’s Guide | 133

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

AddToolbarButton Toolbar ID

Position
Tooltip
Flyby
Resource ID

Add a toolbar button (command) to a toolbar
identified by ToolbarID.

Toolbar ID: The handle returned by a previous
AddToolbar call
Position : Zero based position of this button in the
toolbar bitmap
Tooltip : Tooltip text for this button
Flyby : Flyby text for this button
Resource ID: A user specified command id you
attach to this button. When the user presses this
toolbar button, the UI Host will call the OnAction
method with this Resource ID.

ConfigFolderPath
(get_)

String Get the configuraton folder path where you can
store you custom specific data. Your plugin can
store its data anywhere on the system you like.

PrintLogMessage LEVEL
Message

Print a message to the Log Window. You can
alert the user about error conditions via the log
window. This way your plugin can integrate its
error reporting into Unsniff.

Level : The error level L_CRITICAL, L_MAJOR,
L_MINOR, L_INFO
Message: You error message in a BSTR

PrintOutputMessage Message Print a message to the Output Window. Use this
if you plugin performs some batch tasks like
compiling, scanning files.

Message: Your output message in a BSTR

ActivateUI UI ElementName Activate the specified Unsniff UI component if
possible.This makes the selected UI element
visible.

UI Element Name: Currently “Log Window” or
“Output Window”.

GetActiveContainer IUSNFContainer The currently active capture window. Use this to
get a handle into the contents of the current
capture window.

� Warning
Do not cache the return value of
GetActiveContainer. Since Unsniff can
handle multiple documents at the same
time, the current active container may
changed or closed at any time by the
user. Instead call GetActiveContainer
each time you want to access the current
capture file.

134 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

IUSNFUICustomizer IDL Definitions

/*
 * IUSNFUICustomizer - a plugin needs to implement this interface
 * if it wants to add UI Elements (menus, toolbars, windows) to the main
 * container
 */
 [
 object,
 uuid(3146BBA7-EBB3-484b-877D-00D7894BA1BB),
 helpstring("IUSNFUICustomizer Interface"),
 pointer_default(unique),
 dual
]
 interface IUSNFUICustomizer : IDispatch
 {
 [id(1), ..] HRESULT AttachSite([in] IUSNFUIHostSite * pHost);
 [id(2), ..] HRESULT OnAction([in] IUSNFUIHostSite * pHost,
 [in] int MyResId);
 };

Name Parameters Purpose
AttachSite HostSite Your plugin is now being attached to a UI Host

Site. You must call methods on the supplied
IUSNFUIHostSite interface to add menu items,
toolbar buttons, etc (see the previous section on
IUSNFUIHostSite)

OnAction HostSite
MyResID

A toolbar button or menu item with the given
MyResID was pressed. You can now take action.

Unsniff Plugin Developer’s Guide | 135

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

7.8 Custom Sheets

Samples located in folder “samples/plugins/ui_demo “

As far as Unsniff plugins are concerned, Custom Sheets represent the top of the mountain.
Custom Sheets allow you to extend the Unsniff interface by integrating your own windows as
sheets in the capture window. A screenshot of two custom sheets are shown below. Notice how
they integrate into the Unsniff capture window. You can also see that the first six standard sheets
that are built into Unsniff.

Custom Sheets

• Custom Sheets are ActiveX controls. We recommend using ATL and WTL to write your
custom sheets. They are lightweight and extremely powerful libraries without
compromising on performance.

• Implement your custom sheet as an Eavesdropper (implement the IUSNFEavesdrop

interface). This way you can get in on the action happening in Unsniff as each packet is
processed. You can update your sheet when interesting things happen.

Installing Custom Sheets

Unlike other types of plugins custom sheets must be installed manually. Each custom sheet is an
ActiveX control. You must enter the ProgID of the control and a caption for the sheet in Unsniff.

• Select “Plugins” � “Sheets” from the main Unsniff menu

• The Sheets dialog is displayed. Select the “New” icon from the top-right corner. You will

be shown the New Sheets Dialog

• Enter the ProgID of your Sheet and a short caption. The caption will be shown in the
sheets tab. Try to keep the caption to less than 12 characters.

• Press OK

<End of Task>

136 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

Appendix A – API Error Codes

Whenever Unsniff detects an abnormal situation such as security violation, incorrect API call,
undefined or errored fields, it will generate an error message. This message can be seen in the
Unsniff Log Window provided the correct API Trace Level is set (Sec 2.x). When an API Call
returns FALSE, you can get further information about the error code by called
UserGetLastError().

Critical Errors:
A critical error is one that prevents your entire plugin from working. This is an indication of a bug
in your plugin or in the Unsniff application itself.

To check if an error code is a critical error code use the IS_CRITICAL_ERROR(x) macro.

Code Id Description

UAPIERR_API_NOT_INIT 0x80040204
You have not yet called UserInitAPI().
You should not encounter this error if
you use the wizard.

UAPIERR_FRAME_PREMATURE_END 0x80040205 The frame was cut short unexpectedly.
This indicates a serious system error.

UAPIERR_INVALID_MODULE 0x80040206

The plugin DLL module is invalid. This
indicates a linkage problem with the
DLL. You may have to recompile your
plugin

UAPIERR_OVERSHOT_FRAME 0x80040207
You tried to refer to memory beyond or
below the frame. The frame refers to
the raw packet data for your layer.

UAPIERR_NO_ID 0x80040208

This plugin has no identifcation
information. For C++ plugins you must
call UserInitID() , for XML plugins
you must initialize the plugin attributes.

Major Errors:
A major error is one that affects the current packet or PDU – resulting in a partial or no decode at
all. Other portions of your plugin may continue to work satisfactorily.

To check if an error code is a major error code use the IS_MAJOR_ERROR(x) macro.

Code Id Description
UAPIERR_FIELD_INVALID_SET

0x80040301
You are trying to set an incompatible
value to a field.

UAPIERR_FIELD_TOO_BIG 0x80040302 This field is too big. The maximum size
of a field is 64k bytes

UAPIERR_FIELD_UNDEFINED 0x80040303

The field identified by the integer
FieldID or the string field name is not
defined. You must first define the field
in XML or via UserAddFieldDef().

UAPIERR_FIELD_MISALIGNED 0x80040304
This is a sign of a buggy plugin.
Usually protocols make sure that fields
are aligned on their natural

Unsniff Plugin Developer’s Guide | 137

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

boundaries. This error is generated
when you try to push a field onto the
field stack when the frame is at the
wrong alignment. Example : when you
try to push a 32 bit integer field when
the frame pointer is at an odd offset

UAPIERR_NO_GUARD 0x80040305 System Error.
UAPIERR_BAD_ID 0x80040306 The ID supplied to the field is bad.

UAPIERR_FIELD_TOO_SMALL 0x80040307

The field is too small. The minimum
size of a top level field is 4 bits (a
nibble). You can have 1-bit fields only
as members of a bit-field.

UAPIERR_DUPLICATE_FIELD 0x80040308

This field is a duplicate. This happens
when you try to define a field using the
same Field Name or ID.

UAPIERR_DUPLICATE_ENUM 0x80040309 The enumeration has a duplicate
value.

UAPIERR_UNSORTED_ENUM 0x80040310

The enumeration list is not sorted. This
is a performance warning. Please sort
your enums using a tool like Excel or
Word.

UAPIERR_INVALID_STYLE 0x80040311 This style specified is invalid.

UAPIERR_FIELD_NOT_FOUND 0x80040312
The field was not found in the list of
pre-defined fields or in the list of fields
currently pushed onto the field stack.

UAPIERR_FIELD_NOT_DEFINED 0x80040313
This field has not been defined. Please
define using XML <FieldDef> or using
the C++ UserAddFieldDef() method

UAPIERR_FIELD_NOT_ALIGNED 0x80040314 Same as FIELD_MISALIGNED

UAPIERR_RECORD_TOO_DEEP 0x80040315

The record nesting is too deep. Unsniff
allows a nesting level of five levels.
Try to redefine your fields using less
nesting.

UAPIERR_NO_RECORD 0x80040316 There is no such record

UAPIERR_NO_END_RECORD 0x80040317

No matching end record was found.
This happens when you begin a record
and forget to end it before returning
from BreakoutFields()

UAPIERR_INVALID_FLAGS 0x80040318 The flags field is invalid. See error
message for more detail.

UAPIERR_INVALID_PARAMETER 0x80040319 The parameter was invalid See error
message for more detail

UAPIERR_BAD_TYPE 0x80040320 The field type is unexpected or bad.

UAPIERR_INVALID_RESOURCE 0x80040321 The resource specified (icon or field
image) is bad

UAPIERR_MAJOR_ERROR 0x80040322 System error.
UAPIERR_INVALID_LAYER 0x80040323 System error.

UAPIERR_PARSE_ERROR 0x80040324

There was an error in UserInitQP().
There may be other error messages
that appear along with this that offer
more detail.

UAPIERR_WRONG_PROCESS 0x80040325
You are calling a method in an
incorrect context. For example: you
are expected to push fields onto the

138 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

field stack only in the BreakoutFields()
method. If you try to push fields
anywhere else you will get this error.
This check is applied for all API
methods to ensure that your plugin is
well written.

UAPIERR_WRONG_FIELD_TYPE 0x80040326 Your API call failed because you
applied it to a wrong field type.

UAPIERR_UNKNOWN_CONFIG_TYPE 0x80040327 The configuration parameter is
unknown.

UAPIERR_UNKNOWN_STREAM_OPER 0x80040328 The stream operation is unknown.

UAPIERR_ASN_VALUE_NOT_SET 0x80040329 The ASN field is not yet on the field
stack. As a result its value is not set.

UAPIERR_INVALID_XML_URI 0x80040330 The XML Uri is invalid (cannot be
found)

UAPIERR_XML_SCHEMA_ERROR 0x80040331

The XML protocol plugin file violates
the Unsniff XML Schema. Other
messages are generated along with
this that identify the exact places
where the schema is violated.

UAPIERR_BREAKOUT_ERROR 0x80040332
The field breakout process had an
error. Other messages are generated
that identify the exact sources of error.

UAPIERR_XML_DELAYLOAD_ERROR 0x80040333

The delay load process failed for the
XML document. As a result all fields in
the requested delay load <FieldDefs>
are not available.

UAPIERR_VALUE_NOT_SET 0x80040334

The API call failed because the value
of the field is not yet set. This could be
because the field is not yet on the
Field Stack.

UAPIERR_INVALID_VARIABLE 0x80040335
The variable name is invalid. Only
alpha numeric strings beginning with
an alphabet are allowed

UAPIERR_VARIABLE_NOTFOUND 0x80040336

The variable cannot be found because
either:

�� It was not defined
�� The field attached to the

variable has not yet been
pushed on to the field stack

UAPIERR_INVALID_FIELD 0x80040337

The field will become invalid due to the
current action. See the error message
for the field name and how exactly it
became invalid.

UAPIERR_ASN_TAG_ERROR 0x80040338

There was a tagging error in your
ASN.1 field. A common mistake is to
specify explicit or implicit ASN.1 tags
only for some fields for a ASN
SEQUENCE or SET.

�� You must specify tags for all
fields of a SEQUENCE / SET

�� You cannot mix and match
implicit and explicit tags

UAPIERR_INF_LOOP_DETECTED 0x80040339 The Unsniff API detected an infinite

Unsniff Plugin Developer’s Guide | 139

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

loop in your breakout logic. This ability
of Unsniff prevents many crashes or
hung application situations. This error
message gives you a graceful chance
to fix your bug.

UAPIERR_XML_PLUGIN_ERROR 0x80040340

The XML Plugin could not be installed
into Unsniff due to an error. This error
message is accompanied by other
system error messages that specify
the exact problem.

Minor Errors:
A minor error is one that does not affect the current packet – but it may result in an inefficient
decode or sometimes incorrect decode. Other portions of your plugin may continue to work
satisfactorily.

To check if an error code is a minor error code use the IS_MINOR_ERROR(x) macro.

CodeCodeCodeCode Id Description
UAPIERR_PERF_WARNING 0x80040401 Performance warning

UAPIERR_FRAME_NOT_FULL 0x80040402

You did not account for the entire
frame. This happens when your Field
Stack does account for every byte in
the frame

UAPIERR_TRUNCATED 0x80040403 A string was truncated because it
was too big.

UAPIERR_NOT_IMPL 0x80040404 The functionality requested has not
yet been implemented

UAPIERR_EMPTY_BREAKOUT 0x80040405 The field stack is empty. You did not
account for any fields in the frame.

UAPIERR_EMPTY_CONFIG 0x80040406 The configuration block is empty.

UAPIERR_DUPLICATE_CONFIG 0x80040407 The configuration item is a duplicate.
Only one will be honored.

UAPIERR_UNKNOWN_CONFIG 0x80040408
The configuration item is unknown.
Please specify the item in the
ProvideConfigDefs() method

UAPIERR_UNKNOWN_KEY
 0x80040409

The accounting key in unknown,
define the key in ProvideAcctDefs()
method

UAPIERR_ASN_LENGTH_ERROR 0x80040410 The ASN.1 field length had an error.
See the error message for details.

UAPIERR_ALIGNMENT 0x80040411 The API call failed to an alignment
error.

UAPIERR_BUFFER
 0x80040412 The string operation failed because

the buffer supplied was too small

UAPIERR_XML_SCHEMA_WARNING 0x80040413

The XML schema has some
incorrectly defined elements. This is
just a warning. You may want to fix
this warning to produce a clean XML
document.

UAPIERR_UNSUPPORTED
 0x80040414

The operation on the field is
unsupported

UAPIERR_DUPLICATE_CHOICE 0x80040415 There is an ambiguous choice field.

140 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

This case is similar to having a C++
switch statement with duplicate case
values.

UAPIERR_SIZE_MISMATCH 0x80040416 There was a size mismatch between
two fields

UAPIERR_INVALID_OPERATION 0x80040417 The operation is invalid in the current
state of the API

Unsniff Plugin Developer’s Guide | 141

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

Appendix B – XML Schema

This section contains the schema of the Unsniff XML Specification.

��Info
This XML Schema must be used for basic validation only. It does not
address complex elements like field styles or required attributes for some
field types. We recommend that you use this schema for basic validation
and use Unsniff for advanced validation. To use Unsniff, set the log warning
level to INFO and observe the log window. All schema errors and warnings
will appear in the log window.

<?xml version="1.0" encoding="utf-16"?>
<xsd:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
version="1.0" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="UsnfProtocol" type="UsnfProtocolType" />
 <xsd:complexType name="UsnfProtocolType">
 <xsd:sequence>
 <xsd:element name="vendor" type="xsd:string" />
 <xsd:element name="conformance" type="xsd:string" />
 <xsd:element name="color" type="xsd:string" />
 <xsd:element name="icon" type="xsd:string" />
 <xsd:element name="version" type="xsd:decimal" />
 <xsd:element name="rootfield" type="xsd:string" />
 <xsd:element name="FieldDefs" type="FieldDefsType" />
 <xsd:element name="DescriptionString" type="DescriptionStringType" />
 <xsd:element name="AccessPoints" type="AccessPointsType" />
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:string" />
 <xsd:attribute name="shortname" type="xsd:string" />
 <xsd:attribute name="name" type="xsd:string" />
 <xsd:attribute name="protid" type="xsd:string" />
 </xsd:complexType>
 <xsd:complexType name="AccessPointsType">
 <xsd:sequence>
 <xsd:element name="AccessPoint" type="AccessPointType" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="AccessPointType">
 <xsd:attribute name="hostid" type="xsd:string" />
 <xsd:attribute name="apvalue" type="xsd:int" />
 </xsd:complexType>
 <xsd:complexType name="DescriptionStringType">
 <xsd:sequence>
 <xsd:element name="format" type="xsd:string" />
 <xsd:element name="Params" type="ParamsType" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="ParamsType">
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" name="Param" type="ParamType" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="ParamType">
 <xsd:attribute name="ref" type="xsd:string" />
 </xsd:complexType>
 <xsd:complexType name="FieldDefsType">
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" name="FieldDef" type="FieldDefType" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="FieldDefType">
 <xsd:sequence>
 <xsd:element name="fieldtype" type="xsd:string" />
 <xsd:element name="sizebits" type="xsd:int" />

142 | Unsniff Plugin Developer’s Guide

Version 1.3 Feb 3, 2006

Copyright © Unleash Networks P. Ltd, 2003-05, All rights reserved

 <xsd:element name="styles" type="xsd:string" />
 <xsd:element name="helptext" type="xsd:string" />
 <xsd:element name="variable" type="xsd:string" />
 <xsd:element name="EnumList" type="EnumListType" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" />
 </xsd:complexType>
 <xsd:complexType name="EnumListType">
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" name="enum" type="enumType" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="enumType">
 <xsd:attribute name="value" type="xsd:int" />
 <xsd:attribute name="name" type="xsd:string" />
 </xsd:complexType>
</xsd:schema>

<<END>>

	Introduction
	About Unsniff
	Intended audience
	Skills required

	Getting Started
	The Unsniff DevZone
	Platforms

	Typographical Conventions

	Unsniff Plugin Framework
	GUIDs
	GUID Formats
	Predefined GUIDs

	The Unsniff Plugin Framework
	The COM environment

	The Development Environment
	Microsoft Visual Studio ™
	Unsniff Network Analyzer

	Protocol Plugins Overview
	Protocol plugin tasks
	API error checking
	Which method should I use ?
	When only C++ will do

	Unsniff Packet Analysis Process
	Main packet analysis functions
	Stream analysis

	The Field Breakout process
	The Frame – Stack model
	Example
	Provide Field Definitions
	Breakout Fields

	Fields
	Goals
	Properties of Fields
	Styles
	Standard Field Types
	Defining Fields
	XML vs. C++
	ProvideFieldDefs function
	UserAddFieldDef function
	Simple Fields
	Bit Fields
	Enumerations
	Records
	Using Variables
	System Variables

	Variable Length Fields
	Auto Repeat Fields
	Choice Fields
	Conditional Fields
	External Fields
	ASN.1
	UNIVERSAL Types
	Enumerations
	SEQUENCE and SET fields
	SEQUENCE OF and SET OF
	Tagging
	User Defined Types
	CHOICE fields
	Self Referential ASN fields
	BIT STRING fields

	Padding fields
	Using Delay Load
	Using Resolvers
	User Defined Fields

	Plugins in C++
	The Unsniff Plugin API Visual Studio Wizards
	Wizards Introduction
	Unsniff Project AppWizard
	Unsniff Plugin ATL COM Object Wizard

	Installing Plugins
	Installation
	Activation
	Access Points
	Deployment
	Uninstall

	Hello World
	The HelloWorld protocol
	Instructions

	Handling Stream Based Protocols
	Adding support for stream based protocols
	The IUSNFStream interface
	Writing Stream based Plugins
	Stream Example (LDAP)

	Defining Fields
	Alternate methods
	Using FieldStm
	UserAddFieldDef method

	Accounting
	Add Accounting support
	An Example
	Add accounting manually

	Configuration Parameters
	Add Configuration Support
	Unsniff Plugin Configuration
	The USNF_xxxx_CONFIG_ENTRY macro
	An Example

	XML Plugins
	Using an XML Editor
	Installing XML Plugins
	Unsniff Protocol Plugin XML Specification
	Top-Level Structure
	USNFProtocol
	DescriptionString
	Params
	Param

	AccessPoints
	AccessPoint

	Defaults
	FieldDefs
	FieldDef
	The ID attribute
	Ref fields
	FieldType
	Styles
	Expressions
	EnumList
	OIDEnumList
	Sub Fields using FieldDefs

	Advanced Plugins
	Types
	Development Environment
	View installed plugins
	COM Tips

	Eavesdroppers
	Name Resolvers
	Custom User Object
	Custom User Object Renderer
	User Interface Plugins
	Custom Sheets

	Appendix A – API Error Codes
	Appendix B – XML Schema

