
Unsniff Scripting Guide | 1

Version 1.2 Feb 18, 2006

Copyright © Unleash Networks P. Ltd, 2003-06, All rights reserved

Unsniff Scripting Guide

For use with Unsniff Network Analyzer

Version 1.2
Feb 18, 2006

2 | Unsniff Scripting Guide

Version 1.2 Feb 18, 2006

Copyright © Unleash Networks P. Ltd, 2003-06, All rights reserved

Unleash Networks Pvt Limited
5, Nehru Street, Gowrivakkam
Chennai 601302, India
http://www.unleashnetworks.com
support@unleashnetworks.com

This document and the software described by this document are
Copyright © 2003-06 by Unleash Networks Pvt Ltd. All rights reserved.
Use of the software described herein may only be done in accordance with the
License Agreement provided with the software. This document may not
be reproduced in full or partial form except for the purpose of using the
software described herein in accordance with the License Agreement
provided with the software. Information in this document is subject to
change without notice. Companies, names and data used in the examples
herein are fictitious unless otherwise noted. The API may only be used with
the UNSNIFF NETWORK ANALYZER. You may not reverse engineer or copy
the API to work with any other product.

Windows, Visual Studio are registered trademarks of Microsoft Corporation.
All other trademarks are the property of their respective owners.

UNLEASH NETWORKS PVT LTD WILL NOT BE LIABLE FOR (A) ANY BUG,
ERROR, OMISSION, DEFECT, DEFICIENCY, OR NONCONFORMITY IN
MERCHANT OR THIS DOCUMENTATION; (B) IMPLIED
MERCHANTIBILITY OF FITNESS FOR A PARTICULAR PURPOSE; (C)
IMPLIED WARRANTY RELATING TO COURSE OF DEALING, OR
USAGE OF TRADE OR ANY OTHER IMPLIED WARRANTY
WHATSOEVER; (D) CLAIM OF INFRINGEMENT; (E) CLAIM IN TORT,
WHETHER OR NOT ARISING IN WHOLE OR PART FROM UNLEASH NETWORKS PVT LTD’s
FAULT, NEGLIGENCE, STRICT LIABILITY, OR PRODUCT LIABILITY,
OR (F) CLAIM FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
OR CONSEQUENTIAL DAMAGES, OR LOSS OF DATA, REVENUE,
LICENSEES GOODWILL, OR USE. IN NO CASE SHALL UNLEASH NETWORKS PVT LTDs’
LIABILITY EXCEED THE PRICE THAT LICENSEE PAID.

Unsniff Scripting Guide | 3

Version 1.2 Feb 18, 2006

Copyright © Unleash Networks P. Ltd, 2003-06, All rights reserved

1 Introduction ... 5

1.1 About Unsniff Scripting .. 5
1.2 Intended audience ... 5

1.2.1 Skills required... 5
1.3 Getting Started .. 6

1.3.1 Platforms .. 6
2 Script variations .. 7
3 Scripting Object Model.. 8

3.1 Object Model Diagram... 8
3.2 Object Creation.. 9

3.2.1 A simple example ... 9
3.3 Objects Reference... 11

3.3.1 Unsniff.Database.. 11
3.3.2 Collection Objects .. 13
3.3.3 Packet .. 14
3.3.4 Layer .. 16
3.3.5 Field.. 17
3.3.6 PDU.. 18
3.3.7 Stream.. 19
3.3.8 UserObject ... 21

4 Integrated Scripts.. 23
4.1 Script integration points ... 23

4.1.1 How to integrate scripts into Unsniff... 24
4.2 The CurrentDocument object .. 26

4.2.1 The Script Console... 27
4.2.2 Example ... 28

4 | Unsniff Scripting Guide

Version 1.2 Feb 18, 2006

Copyright © Unleash Networks P. Ltd, 2003-06, All rights reserved

Revision History

June 20 , 2005 Rev 1.0 Initial Release
Sep 26, 2005 Rev 1.1 Updated prior to Beta Release
Feb 18, 2006 Rev 1.2 Comments from Beta 1, documented FindField

for sub fields, documented OpenForRead /
OpenForWrite methods

Unsniff Scripting Guide | 5

Version 1.2 Feb 18, 2006

Copyright © Unleash Networks P. Ltd, 2003-06, All rights reserved

1 Introduction

This guide explains how you can use the scripting features of Unsniff to write your own powerful
analysis tools.

1.1 About Unsniff Scripting

Unsniff is the next generation network analyzer software from Unleash Networks. It features
never before seen graphical representations of packets,PDU analysis, full stream analysis,a new
storage format that can store entire sessions, PDUs, User Objects, annotations,and more. All
conventional features of a network/protocol analyzer such as filters, statistics are also present in
Unsniff in an improved form.

The two features that really set Unsniff apart from the other tools are:

1. Scriptability : Enables you to write your own powerful analysis scripts
2. Extensibility : Extend Unsniff by adding user interface elements or custom protocol

decoders.

This document addresses the scriptability features of Unsniff. If you are interested in writing
custom decoders (or) extending the Unsniff user interface – refer to the “Unsniff API Developers
Guide”.

Many network analysts are talented professionals who regularly write their own tools using
scripting languages like Perl, Shell, or VBScript. Unsniff is the first network analyzer that enables
network analyzers to write their own scripts for performing custom tasks. From monitoring digital
certificates to checking for network performance problems – you can do it all via the Unsniff
Scripting API.

1.2 Intended audience

This document is intended for developers who want to:

�� Write Scripts to perform custom tasks on captured data

1.2.1 Skills required

You need to be familiar with at least one scripting language to use the Unsniff Scripting API. The
standard scripting language on Windows Platforms is “Visual Basic Scripting Edition” also known
as VBScript. We recommend the Ruby scripting language. Its object oriented design and concise
but easy-to-maintain structure make it ideal to build complex, reusable network analysis scripts.
The Fox-Ruby toolkit allows you to write user interfaces for your scripts easily. The examples in
this guide and the sample code provided in the API are in Ruby and VBScript.

You can also use Perl, Jscript, and Python or any other scripting language that provides access
to Windows Automation Objects.

6 | Unsniff Scripting Guide

Version 1.2 Feb 18, 2006

Copyright © Unleash Networks P. Ltd, 2003-06, All rights reserved

1.3 Getting Started

You need the following resources to effectively use the Scripting API

1. A licensed copy of Unsniff Network Analyzer

o You can purchase a licensed copy or download a trial from
http://www.unleashnetworks.com

2. If you are planning to use VBScript, it is pre-installed on all Windows 2000 or XP

systems. You do not need to download it separately

3. If you are planning to use Ruby, download ruby from http://www.rubylang.org

4. If you are planning to use Perl/Python/others. Install the respective runtimes on the

system

5. You can find a whole lot of scripting resources online at the “Unsniff DevZone”
http://www.unleashnetworks.com

��Info
Unleash Networks maintains an online script library at
http://www.unleashnetworks.com/script-contents.html . This library contains many
scripts written by users of Unsniff that can be downloaded and used for free. You
may also share your most useful scripts with others by posting on our website.

1.3.1 Platforms

The Unsniff Plugin API works only on the following platforms:

�� Windows 2000
�� Windows XP

Unsniff Scripting Guide | 7

Version 1.2 Feb 18, 2006

Copyright © Unleash Networks P. Ltd, 2003-06, All rights reserved

2 Script variations

Unsniff supports two types of scripts based on how they interact with Unsniff Network Analyzer.

1. Stand alone scripts
These scripts typically are run from the command line or via a Windows shortcut. They
operate on capture files outside the Unsniff application.

2. Integrated scripts
You can attach custom scripts to many popup menu items in Unsniff. They are triggered
when the corresponding menu item is selected. These scripts give you access to the
currently open capture file and the current selection context. This is a powerful way to
add functionality to the Unsniff application.

Both types of scripts use the same object model. It is fairly easy to write scripts that can work in
both standalone mode and in integrated mode. The integrated mode gives you access to the
currently open capture file and various selection contexts.

8 | Unsniff Scripting Guide

Version 1.2 Feb 18, 2006

Copyright © Unleash Networks P. Ltd, 2003-06, All rights reserved

3 Scripting Object Model

The scripting interface consists of a single top-level object called “Unsniff.Database”. This
object represents a single capture file stored in the Unsniff (*.usnf) format. Your task is to get
hold of the “Unsniff.Database” object and work your way through the other objects. If you are
writing an integrated script – you can additionally access the currently open document, various
selection contexts, and the scripting console. See Section 4 for more details on integrated scripts.

3.1 Object Model Diagram

The following picture shows how the Object Model is organized. Only object names and their
relationships are shown here.

Unsniff.Database

PacketIndex

PDUIndex

UserObjectsIndex

StreamIndex

Packet

PDU

UserObject

Stream

Layers Layer

Fields Field

Fields Field

Packets Packet

Unsniff Scripting Guide | 9

Version 1.2 Feb 18, 2006

Copyright © Unleash Networks P. Ltd, 2003-06, All rights reserved

3.2 Object Creation

The Unsniff Scripting Object Model is a hierarchical structure. Only one top-level object
”Unsniff.Database is publicly creatable via the Prog ID “Unsniff.Database”. All other objects are
accessed via methods and properties of already created objects.

To create the root object:

VBScript

Set MyDB = CreateObject (“Unsniff.Database”)

Ruby

MyDB = Win32OLE.new (“Unsniff.Database”)

3.2.1 A simple example

Let us consider a simple example. In this example, we will write a script to print the description of
each packet in a given Unsniff capture file. This example will illustrate the following concepts.

• The structure of a typical script application

• How the root object is created and accessed

• How you can navigate to the other objects

Example: Print the description of each packet in a given capture file.

VBScript

' -----------------------
' Check usage & arguments
' -----------------------
if WScript.Arguments.Count <> 1 then
 WScript.Echo "Usage: prpidx <filename>"
 WScript.Quit
end if

ArgFile = WScript.Arguments.Item(0)

‘ --
‘ Open the file & navigate to packet index
‘ --
Set UnsniffDB = CreateObject("Unsniff.Database")
UnsniffDB.Open(ArgFile)

Set PacketStore = UnsniffDB.PacketIndexSet PacketStore = UnsniffDB.PacketIndexSet PacketStore = UnsniffDB.PacketIndexSet PacketStore = UnsniffDB.PacketIndex

For Each Packet In PacketStoreFor Each Packet In PacketStoreFor Each Packet In PacketStoreFor Each Packet In PacketStore
 WScript.EchoWScript.EchoWScript.EchoWScript.Echo Packet.Description Packet.Description Packet.Description Packet.Description
NextNextNextNext

UnsniffDB.Close()

10 | Unsniff Scripting Guide

Version 1.2 Feb 18, 2006

Copyright © Unleash Networks P. Ltd, 2003-06, All rights reserved

Ruby

require 'win32ole'

USAGE = "prpidx <capture-filename>"

function: print the description

def printPacket(packet)
 $stdout << packet.Description << “\n”
end

check arguments

if ARGV.length != 1
 puts USAGE
 exit 1
end

UnsniffDB = WIN32OLE.new("Unsniff.Database")
UnsniffDB.Open(ARGV[0])
Count = UnsniffDB.PacketCount

PacPacPacPacketStore = UnsniffDB['PacketIndex']ketStore = UnsniffDB['PacketIndex']ketStore = UnsniffDB['PacketIndex']ketStore = UnsniffDB['PacketIndex']

(0..Count(0..Count(0..Count(0..Count----1).each{ |idx| printPacket(PacketStore.Item(idx)) }1).each{ |idx| printPacket(PacketStore.Item(idx)) }1).each{ |idx| printPacket(PacketStore.Item(idx)) }1).each{ |idx| printPacket(PacketStore.Item(idx)) }

UnsniffDB.Close()

Unsniff Scripting Guide | 11

Version 1.2 Feb 18, 2006

Copyright © Unleash Networks P. Ltd, 2003-06, All rights reserved

3.3 Objects Reference

This section describes the properties and methods supported by each object in the Unsniff
Scripting Object Model.

3.3.1 Unsniff.Database

Description
Represents a capture file. You must first create this object and then use this to open an existing
capture file or create a new capture file. You can then use the methods and properties provided
by this object to navigate to other interesting parts of the capture file. The Unsniff.Database is the
only object that can be publicly created via its ProgID.

Properties

Name Type Access Description

PacketCount Long Read The number of packets currently
present in the capture database

PDUCount Long Read The number of PDUs currently present
in the capture database

PacketIndex Collection Read A collection of Packet objects
PDUIndex Collection Read A collection of PDUs

StreamIndex Collection Read
A collection of Streams.
Each stream represents a TCP/IP
session.

UserObjectsIndex Collection Read
A collection of User Objects.
Examples of user objects are images,
HTML, audio, RTP media, files, etc

Methods

Name Parameters Description

Open Filename
(String)

Opens the capture file identified by the filename
parameter for read-write access. The filename can be
a full pathname or a relative filename. You can also
open the file explicitly for readonly or readwrite access
using the OpenForRead and OpenForWrite methods.

OpenForRead Filename
(String)

Opens the capture file identified by the filename for
read only. Use this method if you are just analyzing a
capture file and not trying to change its contents.

OpenForWrite Filename
(String)

Open the capture file for read-write access. Use this
method if you want to change the contents of the
capture file in any way.

��Info
This call will return an error if the capture file
is already opened in the main Unsniff
application. Try OpenForRead or close the
capture file in Unsniff while your script is
running.

12 | Unsniff Scripting Guide

Version 1.2 Feb 18, 2006

Copyright © Unleash Networks P. Ltd, 2003-06, All rights reserved

New Filename
(String)

Creates a new capture file with the given filename.
The filename can be a full pathname or a relative
filename.

Close None
Close the file. The file must be currently open via the
Open or New methods. All changes made to a file
opened with write access are saved.

BeginExport

Filename
(String)
Type
(String)

Open an export file with the given name and type.
Currently the only type supported is “libpcap”.

To export an entire file:
 Use the Export() method

To selectively export packets:
 Call BeginExport(), followed by a bunch of
 ExportXXX() calls, then with an EndExport()

ExportPacket Packet Export this packet to the export file currently opened
via BeginExport()

ExportStream Stream Export the entire stream (e.g. TCP/IP session) to the
export file currently opened via BeginExport()

EndExport None Close the export file previously opened via
BeginExport()

Export
Type(String)
Filename
(String)

Export all the packets in this capture file to the given
file. The desired export format is specified in the Type
parameter.

Currently the only Type supported is “libpcap”

Import
Type(String)
Filename
(String)

Import all the packets in a capture file in another
format into this file.

Currently - Type must be set to “libpcap”

AddPacket Packet

Add the given Packet to this capture file. This packet
could be from another capture file that is currently
open.

AddStream Stream
Add the given Stream to this capture file. The stream
could be from another capture file that is currently
open.

Unsniff Scripting Guide | 13

Version 1.2 Feb 18, 2006

Copyright © Unleash Networks P. Ltd, 2003-06, All rights reserved

3.3.2 Collection Objects

Description
A collection is used to conceptually store a group of objects of the same type. You can use
standard scripting methods to access the contents of a collection.

Properties

Name Type Access Description

Count Long Read The number of objects stored in this
collection

Methods

Name Parameters Description

Item Long

Returns the Item at this index.
The items are zero-indexed. This method is implicitly
called if you use the array operators in most scripting
languages. For example: PacketStore(10) is internally
translated to PacketStore.Item(10).

Usage Notes
You can use the For..Next or the For Each method to iterate through a collection. Consult your
scripting language for the corresponding methods. VBScript and Ruby Examples are shown
below.

VBScript

‘ Use the For Each statement
Set PacketStore = UnsniffDB.PacketIndexSet PacketStore = UnsniffDB.PacketIndexSet PacketStore = UnsniffDB.PacketIndexSet PacketStore = UnsniffDB.PacketIndex
For Each Packet In PacketStoreFor Each Packet In PacketStoreFor Each Packet In PacketStoreFor Each Packet In PacketStore
 WScript.EchoWScript.EchoWScript.EchoWScript.Echo Packet.Description Packet.Description Packet.Description Packet.Description
NextNextNextNext

‘ Use the For statement
SetSetSetSet PacketStore = UnsniffDB.PacketIndex PacketStore = UnsniffDB.PacketIndex PacketStore = UnsniffDB.PacketIndex PacketStore = UnsniffDB.PacketIndex
NumPackets = PacketStore.Count
For I = 0 To NumPacketsFor I = 0 To NumPacketsFor I = 0 To NumPacketsFor I = 0 To NumPackets----1111
 Set Packet = PacketStore(I)Set Packet = PacketStore(I)Set Packet = PacketStore(I)Set Packet = PacketStore(I)
 WScript.EchoWScript.EchoWScript.EchoWScript.Echo Packet.Description Packet.Description Packet.Description Packet.Description
NextNextNextNext

Ruby
At Unleash Networks; Ruby is our favorite scripting language. The following examples illustrate
how collections are accessed in Ruby. It does not get any terser and easy to maintain than this.

‘ Use the Count
PacketStore = UnsniffDB['PacketIndex']PacketStore = UnsniffDB['PacketIndex']PacketStore = UnsniffDB['PacketIndex']PacketStore = UnsniffDB['PacketIndex']
Count = PacketStore[‘Count’]Count = PacketStore[‘Count’]Count = PacketStore[‘Count’]Count = PacketStore[‘Count’]
(0..Count(0..Count(0..Count(0..Count----1).each{ |idx| print PacketStore.Item(idx).Description 1).each{ |idx| print PacketStore.Item(idx).Description 1).each{ |idx| print PacketStore.Item(idx).Description 1).each{ |idx| print PacketStore.Item(idx).Description }}}}

‘ Use the each block
Set PacketStore = UnsniffDB.PacketIndexSet PacketStore = UnsniffDB.PacketIndexSet PacketStore = UnsniffDB.PacketIndexSet PacketStore = UnsniffDB.PacketIndex
PacketStore.each { |packet| print packet.Description }PacketStore.each { |packet| print packet.Description }PacketStore.each { |packet| print packet.Description }PacketStore.each { |packet| print packet.Description }

14 | Unsniff Scripting Guide

Version 1.2 Feb 18, 2006

Copyright © Unleash Networks P. Ltd, 2003-06, All rights reserved

3.3.3 Packet

Description
Represents a single packet present in the capture file.

Properties

Name Type Access Description

ID Long Read A unique ID for each packet assigned
by Unsniff

Description String Read/Write
A text description of the packet. This is
the description that appears in the
packet index list in Unsniff

Type String Read
The type of packet. In most cases this is
the name of the highest layer protocol
present in the packet.

Length Long Read

Length of the packet. This is the number
of bytes captured by Unsniff.
If you have specified a smaller capture
length in Unsniff , the actual size of the
packet on the wire may be more. See
WireLength.

WireLength Long Read

The length of the packet on the wire. In
most cases this will be equal to the
Length property. If the packet was
truncated the WireLength will be greater
than Length

IsBookmarked BOOL Read/Write You can use this to check if a packet is
bookmarked or to set/clear a bookmark

IsAnnotated BOOL Read/Write

Annotations are small notes attached to
a packet by a network analysis
professional. This aids in packet
analysis when these files are accessed
later. Use this property to check if an
annotation exists or to set/clear an
annotation

Annotation String Read/Write Use this to query or to set an
annotation.

Timestamp String Read

A string representation of the timestamp
of the packet. The format of this
timestamp is determined from your
current Windows Locale settings.

TimestampSecs Long Read

The seconds part of the packet
timestamp. This number returns the
number of seconds since midnight
January 1, 1900

TimestampUSecs Long Read The microseconds part of the packet
timestamp.

Timestamp String Read

A string representation of the timestamp
of the packet. The format of this
timestamp is determined from your
current Windows Locale settings.

SourceAddress String Read The source address of this packet. The
destination address of this packet. If the

Unsniff Scripting Guide | 15

Version 1.2 Feb 18, 2006

Copyright © Unleash Networks P. Ltd, 2003-06, All rights reserved

address has been resolved to a name –
this property contains the source name.

DestinationAddress String Read

The destination address of this packet.
If the address has been resolved to a
name – this property contains the
destination name.

Layers Collection Read

Get all the layers contained in this
packet. You have to first access the
layer object to get at the individual fields
of a packet.

Methods

Name Parameters Description

FindLayer LayerName(String)

Find a protocol layer within this packet.

Example:

Set UDPLayer = Packet.FindLayer(“UDP”)

FindLayerByGUID LayerGUID(String)

Find a protocol layer within this packet with the
specified GUID. Use this version for higher
performance than finding layer by name

Example:

Set UDPLayer =
Packet.FindLayer(“{14D7AB53-CC51-47e9-
8814-9C06AAE60189}”)

WireLength Long
Actual length of the packet. If you have specified a
smaller capture length in Unsniff , the number of
bytes captured could be less than the WireLength.

RawData String A hex dump of the entire packet data. You must
interpret the hex within your captue file.

16 | Unsniff Scripting Guide

Version 1.2 Feb 18, 2006

Copyright © Unleash Networks P. Ltd, 2003-06, All rights reserved

3.3.4 Layer

Description
The layer object represents a protocol layer within a packet. For example an HTTP packet may
have “Ethernet” , “IP”, “TCP”, “HTTP” layers. These are modeled using the Layer object

Properties

Name Type Access Description

Name String Read The name of the layer. This is usually
the short name of the protocol.

ProtID String Read

The GUID of the protocol layer. The
GUID is returned as a string in Registry
format.

You may recall that in the Unsniff plugin
architecture each protocol must be
assigned a unique GUID.

Size Long Read The number of bytes in this layer.

Fields Collection Read

Get all the fields contained in this layer.
This is a collection. For example: In the
Ethernet layer: you may have the “Dest
MAC,”Src MAC”, “Ethertype” fields. This
is your main method to drilldown to field
level details from a packet.

Methods

Name Parameters Description

FindField FieldName
(String)

Find a field in this layer using a field name.
The field name must be as it appears in Unsniff. This
method returns the first field that matches the name.
All sub fields are searched for a match.
Example:
Set IpSrc = iplayer.FindField(“Src Address”)

This method also allows you to specifically search
fields within records using a special notation.
Notation: “>Group 1>Sub Group2> MyField”. There is
no limit on the number of groups that can be nested
this way. When you use this notation, FindField will
search “Group 1” for a field named “Sub Group2”,
then search “Sub Group 2” for a field named
“MyField”. Use this method to disambiguate duplicate
field names or to cut down on exhaustive searches.

Example:
Set Fbit = iax.FindField(“>FULL FRAME>Source
Call Number>F”)

RawData String A hex dump of bytes in this layer only.

Unsniff Scripting Guide | 17

Version 1.2 Feb 18, 2006

Copyright © Unleash Networks P. Ltd, 2003-06, All rights reserved

3.3.5 Field

Description
Represents a single protocol field. If this field is a record or a group field then this field contains
other nested fields (called subfields).

Properties

Name Type Access Description

Name String Read The name of the field. This is usually
the full name of the field

Value String Read

The value of the field as a string. Most
scripting language support dynamically
converting strings to numbers if you
want to work with integer field values

SizeBits Long Read The size of the field in bits

OffsetBits Long Read The offset of the field (in bits) starting
from the beginning of this layer.

FieldID Long Read
Each field is assigned a unique ID by
the plugin developer. You may find this
ID useful if you are a plugin developer.

HelpID Long Read A help ID is assigned to each field. This
provides bubble help for each field.

SubFieldCount Long Read

The number of sub-fields contained in
this field. Some fields such as Flags,
Records, Sequences may contain other
fields. The SubFieldCount property
returns the number of immediate
subfields. If the SubFieldCount is 0, you
can be sure that this is a simple field
and does not contain any sub-fields.

SubFields Collection Read

If this field has subfields, this collection
object contains a list of such sub fields.
Each object in the collection is again a
Field object

RawData String Read A hex dump of this fields data. You can
use this to format your own field values.

Methods

This object does not define any methods

18 | Unsniff Scripting Guide

Version 1.2 Feb 18, 2006

Copyright © Unleash Networks P. Ltd, 2003-06, All rights reserved

3.3.6 PDU

Description
A Protocol Data Unit is a block of data that is independent of packet boundaries. For stream
based protocols the PDU is the meaningful unit of data. PDUs do not respect packet boundaries
at all. Unsniff tracks all PDUs in addition to packets, this allows for powerful stream based
protocol analysis capabilities. The PDU object represents a single PDU present in the capture file.

Properties

Name Type Access Description

ID Long Read Each PDU is assigned a unique ID by
Unsniff

ProtID String Read

The Protocol GUID of the PDU. Each
protocol in Unsniff must have a unique
GUID. The string returned in a GUID in
the registry format

Name String Read The Name of the PDU. In most cases,
this is the protocol name of the PDU.

Description String Read/Write
The text description of the PDU. Your
script can also change the description
based on your analysis.

SenderAddress String Read
The network address of the Sender of
this PDU. This is a network name if this
address has been resolved to a name.

ReceiverAddress String Read
The network address of the Receiver of
this PDU. This is a network name if this
address has been resolved to a name.

Timestamp String Read

The time this PDU was created. The
time is returned in a string. The format
of the time is determined by the current
Windows Locale settings

TimestampSecs Long Read

The seconds’ part of the PDU create
timestamp. This number returns the
number of seconds since midnight
January 1, 1900

TimestampUSecs Long Read The microseconds part of the PDU
create timestamp.

Length Long Read The length (in bytes) of this PDU

Fields Collection Read This collection object contains all the
fields in the PDU.

RawData String Read A hex dump of this PDU.

Methods

This object does not define any methods

Unsniff Scripting Guide | 19

Version 1.2 Feb 18, 2006

Copyright © Unleash Networks P. Ltd, 2003-06, All rights reserved

3.3.7 Stream

Description
This object represents a complete TCP/IP session1. Unsniff allows you to work with complete
TCP/IP sessions while performing post-capture analysis. You can write simple scripts to perform
complex tasks that would be impossible or painfully difficult with other legacy network analyzers.

Some examples2:

• Print a list of all TCP/IP sessions that transferred more than 2M bytes total
• Export the top 5 busiest TCP/IP sessions to a libpcap file
• Reassemble and save the first 100 bytes of each TCP session

Properties

Name Type Access Description

ID Long Read Each stream is assigned a unique ID by
Unsniff

InSegmentCount Long Read

Number of segments from Destination to
Source.

For TCP the InSegmentCount is the number of
segments in the opposite direction of the initial
SYN packet

OutInSegmentCount Long Read

Number of segments from Source to
Destination.

For TCP the OutSegmentCount is the number of
segments in the same direction of the initial SYN
packet

InByteCount Long Read Number of bytes from Destination to Source.
(in the opposite direction to the initial SYN packet)

OutByteCount Long Read Number of bytes from Source to Destination
(in the same direction as the initial SYN packet)

StartTimeStamp String Read

The timestamp when the session started.
For TCP, this is when the first SYN packet
was seen.
The format of the timestamp string is
determined by the Windows Locale settings

EndTimeStamp String Read

The timestamp when the session ended.
The session can end due to the normal FIN
sequence or RST or due to user stopping the
capture prematurely.

For format of the timestamp string is
determined by the Windows Locale settings

StartTimestampSecs Long Read
The seconds part of the start timestamp.
This number returns the number of seconds
since midnight January 1, 1900

StartTimestampUSecs Long Read The microseconds part of the start
timestamp.

1 Future versions of Unsniff will support other types of streams in addition to TCP/IP
2 Think about how difficult these tasks would be to accomplish using your old network analyzer

20 | Unsniff Scripting Guide

Version 1.2 Feb 18, 2006

Copyright © Unleash Networks P. Ltd, 2003-06, All rights reserved

EndTimestampSecs Long Read
The seconds part of the end timestamp. This
number returns the number of seconds since
midnight January 1, 1900

EndTimestampUSecs Long Read The microseconds part of the end
timestamp.

Description String Read/Write
The text description of the stream. Your
script can also change the description based
on your analysis.

SourceAddress String Read

The network address of the source of this
stream. A network name is returned if this
address has been resolved to a name. For
TCP, the source is the station that sent the
initial SYN segment.

DestinationAddress String Read

The network address of the destination of
this stream. A network name is returned if
this address has been resolved to a name.
For TCP, the source is the station that sent
the SYN+ACK response to the initial SYN
segment.

Packets Collection Read

All the packets that make up this stream.
This includes error packets, for example late
arrivals, duplicate packets, out of order
packets, etc. If you want to perform custom
stream analysis you may want access to
these packets

Methods

Name Parameters Description

SaveToFile

FileName
(String)
Direction
(String)
SeekPos
(Long)
NumBytes
(Long)

Reassemble and save the contents of this stream.
You can save either direction beginning at any offset
and any number of bytes.

FileName: Can be a pathname or a relative filename
Direction : “in” for incoming; “out” for outgoing
SeekPos: 0 for beginning of stream
NumBytes: Number of bytes to write

Unsniff Scripting Guide | 21

Version 1.2 Feb 18, 2006

Copyright © Unleash Networks P. Ltd, 2003-06, All rights reserved

3.3.8 UserObject

Description
At the top of the Unsniff food chain is the user object. This can be anything that is of great interest
to the network analysis professional. You can write plugins to extract any type of user object from
observed traffic. Using the Unsniff Scripting API you can automate all aspects of user objects.

Some examples:

• Save all images greater than 75K in size to a directory
• Export all RTP audio conversations from a given SIP Phone to a directory

Properties

Name Type Access Description

ID Long Read Each user object is assigned a unique ID by
Unsniff

IID String Read
The GUID of the user object type. Each user
object type must have a unique GUID. The
GUID string is in registry format.

Name String Read The user object full name.

Type String Read

The user object type. This is defined by the
author of the user object type. Typically this
type identifies the user object type. Examples:
Image, HTML, RTP Media, File, etc.

Description String Read/Write
A text description of the user object. You
script can change this description if you wish
based on your analysis

PreferredFileName String Read/Write

Some Unsniff Plugins are very smart. They
can figure out the most appropriate name for
a user object based on the context in which it
was created. For example: The preferred
filename of a image transferred via HTML is
that of the corresponding GET request. You
can change this name if you want based on
your analysis.

SenderAddress String Read
The network address of the Sender of this
User Object. This is a network name if this
address has been resolved to a name.

ReceiverAddress String Read
The network address of the Receiver of this
User Object. This is a network name if this
address has been resolved to a name.

StreamID Long Read

If this User Object was extracted from a
stream. This contains the Stream ID. For user
objects not associated with a stream -1 is
returned

StreamSeekPos Long Read

If this User Object was extracted from a
stream. This contains the Stream Seek
Position. For user objects not associated with
a stream -1 is returned

StreamDirection String Read If this User Object was extracted from a
stream. This contains the direction (“in” or

22 | Unsniff Scripting Guide

Version 1.2 Feb 18, 2006

Copyright © Unleash Networks P. Ltd, 2003-06, All rights reserved

“out”). For user objects not associated with a
stream a null string is returned

Length Long Read The size in bytes of this user object.

HasError Boolean Read

Does this user object have an error. Typical
errors are when user objects are not
completed. You may want to check this
property before proceeding to do too much
with a given user object.

State String Read The state of the user object.

CreateTimestamp String Read

The time this user object was created. The
time is returned in a string. The format of the
time is determined by the current Windows
Locale settings

Methods

Name Parameters Description

SaveToFile
FileName
(String)

Save the user object to a file.

FileName: Can be a pathname or a relative filename

Unsniff Scripting Guide | 23

Version 1.2 Feb 18, 2006

Copyright © Unleash Networks P. Ltd, 2003-06, All rights reserved

4 Integrated Scripts

Integrated scripts allow you to add custom functionality to the Unsniff Network Analyzer
application. You can attach custom scripts to menu items. Your scripts will be triggered when the
user selects the corresponding menu item.

In addition to all the objects you have seen in Section 3. Scripting Object Model – you get access
to the following objects.

• The currently active capture document.
• The current selection context for packets, PDUs, streams, user objects
• A powerful scripting console that allows you to output formatted text

4.1 Script integration points

You can attach custom scripts to the following menus in Unsniff.

Capture Menu You can add a menu item under a new top-level menu – or merge with

an existing top-level menu such as (Tools, Plugins, Edit).

Use this menu if your scripts work on the entire capture file independent
of the user selection.

Packet sheet context
menu

You can add a menu item to the packet sheet context menu. This
context menu is shown when the user right clicks on the packets sheet.
Use this is your script needs to work on selected packets.

PDU sheet context
menu

Add a menu item to the PDU sheet context menu. Use this method if
your script needs to work with selected PDUs.

Streams sheet
context menu

Add a menu item to the Streams sheet context menu. This works on
entire streams. Use this method if your script needs to work with
selected streams.

User Objects sheet
Context menu

Add a menu item to the User Objects sheet context menu. Use this
method if you want to work with selected user objects.

Script Integration Points

24 | Unsniff Scripting Guide

Version 1.2 Feb 18, 2006

Copyright © Unleash Networks P. Ltd, 2003-06, All rights reserved

4.1.1 How to integrate scripts into Unsniff

You can integrate your scripts into Unsniff via Tools -> User Scripts.

Step-by-step example
Assume that you have written a custom RTP Analysis script. This script analyzes an entire RTP
session of a selected RTP packet that is part of the session. In this case you may wish to activate
this script from the packets sheet context menu. Here is a step-by-step.

1. Open the User Scripts Manager via Tools � User Scripts This opens the “Manage User
Scripts” dialog.

2. Click on the “New” button on the top-right corner of the dialog. This button opens the

“Script Details Dialog” which allows you to create a new menu item and attach your script
to it.

3. The “Script Details” Dialog is shown below. Use this dialog to enter the details shown in
the table.

Unsniff Scripting Guide | 25

Version 1.2 Feb 18, 2006

Copyright © Unleash Networks P. Ltd, 2003-06, All rights reserved

Name A short name for the script functionality

Context Select where you want to attach your scripts. Five menu

options are provided, you need to select one from the drop
down list.

Menu Tag

A menu tag identifies how your script will be merged with
the existing menu. You can use a “\” (backslash) character
to create nested menus. In the above example RTP\RTP
Analysis is a nested menu. You are encouraged to use
nested menus to group related scripts together.

Description Optional description
Script file Click the browse button to select your script file. A script

file must follow these rules.
• VBScript files must have an extension *.vbs
• Ruby files must have an extension *.rb
• Jscript files must have an extension *.js

Script Details

4. Click OK – then restart Unsniff for your changes to take effect. The figure below shows a

custom RTP Analysis script attached to the Packets sheet context menu.

26 | Unsniff Scripting Guide

Version 1.2 Feb 18, 2006

Copyright © Unleash Networks P. Ltd, 2003-06, All rights reserved

4.2 The CurrentDocument object

Your script will automatically have access to an object called “CurrentDocumentCurrentDocumentCurrentDocumentCurrentDocument”.
This object provides you with access to the currently active capture file as well as the current
selection context. Here is a list of properties and method of this object.

Properties

Name Type Access Description
DatabaseName String Read Name of the currently open capture file

Console Object Read

Creates a new scripting console object. This
can be used to output results of your script.
See the next section for a list of properties
and methods for the Console object.

PacketCount Long Read Number of packets in the currently open
capture file

PacketIndex Collection Read A collection of Packet objects. This represents
all the packets in the capture file.

SelectedPacket Object Read
The selected packet if a single packet (or)
The first selected packet if multiple packets
are selected

SelectedPackets Collection Read All selected packets (a collection of Packet
objects)

PDUCount Long Read Number of PDUs in the currently open capture
file

PDUIndex Collection Read
A collection of PDU objects. This represents
all the PDUs in the currently active capture
file.

SelectedPDU Object Read The selected PDU if single selection (or)
The first selected PDU if multiple selection

SelectedPDUs Collection Read All selected PDUs (a collection of PDU
objects)

StreamCount Long Read Number of streams in the currently open
capture file

StreamIndex Collection Read
A collection of Stream objects. This
represents all streams in the currently active
capture file.

SelectedStream Object Read The selected stream

SelectedStreams Collection Read All selected streams (a collection of Stream
objects)

UserObjectsCount Long Read Number of user objects in the currently open
capture file

UserObjectsIndex Collection Read
A collection of UserObject objects. This
represents all the user objects in the currently
active capture file.

SelectedUserObject Object Read
The selected user object (or)
The first selected user object if multiple
selection

SelectedUserObjects Collection Read All selected user objects (a collection of
UserObject objects)

Unsniff Scripting Guide | 27

Version 1.2 Feb 18, 2006

Copyright © Unleash Networks P. Ltd, 2003-06, All rights reserved

Methods

This object does not define any methods

4.2.1 The Script Console

Unsniff provides a powerful console via the CurrentDocument.ConsoleCurrentDocument.ConsoleCurrentDocument.ConsoleCurrentDocument.Console object. The script
console provides rich formatting features that can be used to create great reports. The properties
and methods of the Script console are shown below.

Properties

Name Type Access Description

TextColor String Read/Write

The current text color. The format of the text
color is #RRGGBB. The RGB components are
specified in hex. For example:

Con.TextColor = “#FF0000”

Will set the current text color to full red.

Bold Boolean Read/Write

The current bold text style. This is a boolean
value.
In VBScript:
Con.Bold = True

In Ruby:
Con.Bold = true

Hilite Boolean Read/Write The current hilite style. Hilited text appears in
a yellow hilite background.

Italics Boolean Read/Write The current italic style.

Methods

Name Parameters Description

Write String

Write the string to the console using the current styles

WriteLine String

Write the string to the console using the current styles.
This method automatically appends the required
CR+LF characters. New text will start on a separate
line.

SetDefaultFormat None Reset all styles. Set TextColor to black.
SetTitle String Set the title of the script console window
Clear None Clear the contents of the script console window

28 | Unsniff Scripting Guide

Version 1.2 Feb 18, 2006

Copyright © Unleash Networks P. Ltd, 2003-06, All rights reserved

4.2.2 Example

A simple example will illustrate the use of the CurrentDocument and the Script Console.

Task : Print a description of each selected packet (Packet.Description)

1. Write the following VBScript script and save it to a file (eg: myprint.vbs)

VBScript

' ---------------------------------
' Get access to the script console
' ---------------------------------
Dim Con
Set Con = CurrentDocument.ConsoleSet Con = CurrentDocument.ConsoleSet Con = CurrentDocument.ConsoleSet Con = CurrentDocument.Console
Con.TextColor = “#55EE33”

Con.WriteLine “Packet Printer Demo”
Con.WriteLine “-------------------“

Set SelPacketList = CurrentDocument.SelectedPacketsCurrentDocument.SelectedPacketsCurrentDocument.SelectedPacketsCurrentDocument.SelectedPackets

For Each Packet In SelPacketList
 Con.WriteLine Packet.Description
Next

2. Attach the script to the packet sheet context menu. See Section 4.1.1 to find out how you

can integrate your script into Unsniff

3. Open a capture file in Unsniff or capture some packets from the network. Then select a

few packets from the packets sheet. Right click and select the menu item corresponding
to your script.

4. Now the Script Console window will show the desired analysis output.

<<END>>

	Introduction
	About Unsniff Scripting
	Intended audience
	Skills required

	Getting Started
	Platforms

	Script variations
	Scripting Object Model
	Object Model Diagram
	Object Creation
	A simple example

	Objects Reference
	Unsniff.Database
	Collection Objects
	Packet
	Layer
	Field
	PDU
	Stream
	UserObject

	Integrated Scripts
	Script integration points
	How to integrate scripts into Unsniff

	The CurrentDocument object
	The Script Console
	Example

